These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
551 related articles for article (PubMed ID: 30743956)
1. Natural and assisted dissipation of polycyclic aromatic hydrocarbons in a long-term co-contaminated soil with creosote and potentially toxic elements. Madrid F; Rubio-Bellido M; Villaverde J; Peña A; Morillo E Sci Total Environ; 2019 Apr; 660():705-714. PubMed ID: 30743956 [TBL] [Abstract][Full Text] [Related]
2. Natural attenuation of fluorene and pyrene in contaminated soils and assisted with hydroxypropyl-β-cyclodextrin. Effect of co-contamination. Madrid F; Rubio-Bellido M; Villaverde J; Tejada M; Morillo E Sci Total Environ; 2016 Nov; 571():42-9. PubMed ID: 27454573 [TBL] [Abstract][Full Text] [Related]
3. Extraction of PAHS from an aged creosote-polluted soil by cyclodextrins and rhamnolipids. Side effects on removal and availability of potentially toxic elements. Madrid F; Ballesteros R; Lacorte S; Villaverde J; Morillo E Sci Total Environ; 2019 Feb; 653():384-392. PubMed ID: 30412883 [TBL] [Abstract][Full Text] [Related]
4. Differential degradation of polycyclic aromatic hydrocarbon mixtures by indigenous microbial assemblages in soil. Sawulski P; Boots B; Clipson N; Doyle E Lett Appl Microbiol; 2015 Aug; 61(2):199-207. PubMed ID: 26031321 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons. Lotfabad SK; Gray MR Appl Microbiol Biotechnol; 2002 Nov; 60(3):361-6. PubMed ID: 12436320 [TBL] [Abstract][Full Text] [Related]
6. [Prediction of PAHs Bioavailability in Spiked Soil by Composite Extraction with Hydroxypropyl- Zhang YN; Yang XL; Bian YR; Gu CG; Wang F; Wang DZ; Jiang X Huan Jing Ke Xue; 2016 Aug; 37(8):3201-3207. PubMed ID: 29964751 [TBL] [Abstract][Full Text] [Related]
7. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Bezza FA; Chirwa EM Chemosphere; 2016 Feb; 144():635-44. PubMed ID: 26408261 [TBL] [Abstract][Full Text] [Related]
8. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on Wolf DC; Gan J Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by microbial consortium from paddy rice soil. Bacosa HP; Cayabo GDB; Inoue C J Environ Sci Health A Tox Hazard Subst Environ Eng; 2023; 58(6):617-622. PubMed ID: 37122120 [TBL] [Abstract][Full Text] [Related]
10. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. Li X; Li P; Lin X; Zhang C; Li Q; Gong Z J Hazard Mater; 2008 Jan; 150(1):21-6. PubMed ID: 17512657 [TBL] [Abstract][Full Text] [Related]
11. Extraction of nonylphenol, pyrene and phenanthrene from sewage sludge and composted biosolids by cyclodextrins and rhamnolipids. Madrid F; Rubio-Bellido M; Morillo E Sci Total Environ; 2020 May; 715():136986. PubMed ID: 32023519 [TBL] [Abstract][Full Text] [Related]
12. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils. Wolf DC; Cryder Z; Gan J Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356 [TBL] [Abstract][Full Text] [Related]
13. Identification and analysis of polyaromatic hydrocarbons (PAHs)--biodegrading bacterial strains from refinery soil of India. Chaudhary P; Sahay H; Sharma R; Pandey AK; Singh SB; Saxena AK; Nain L Environ Monit Assess; 2015 Jun; 187(6):391. PubMed ID: 26026847 [TBL] [Abstract][Full Text] [Related]
14. Rhamnolipid-enhanced solubilization and biodegradation of PAHs in soils after conventional bioremediation. Posada-Baquero R; Grifoll M; Ortega-Calvo JJ Sci Total Environ; 2019 Jun; 668():790-796. PubMed ID: 30870747 [TBL] [Abstract][Full Text] [Related]
15. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil. Bengtsson G; Törneman N; Yang X Environ Pollut; 2010 Sep; 158(9):2865-71. PubMed ID: 20630638 [TBL] [Abstract][Full Text] [Related]
16. Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil. Juhasz AL; Smith E; Waller N; Stewart R; Weber J Environ Pollut; 2010 Feb; 158(2):585-91. PubMed ID: 19775788 [TBL] [Abstract][Full Text] [Related]
17. Mixed-surfactant-enhanced phytoremediation of PAHs in soil: Bioavailability of PAHs and responses of microbial community structure. Lu H; Wang W; Li F; Zhu L Sci Total Environ; 2019 Feb; 653():658-666. PubMed ID: 30759591 [TBL] [Abstract][Full Text] [Related]
18. Two-liquid-phase system: A promising technique for predicting bioavailability of polycyclic aromatic hydrocarbons in long-term contaminated soils. Wang C; Wang Z; Li Z; Ahmad R Chemosphere; 2017 Feb; 169():685-692. PubMed ID: 27914353 [TBL] [Abstract][Full Text] [Related]
19. Dissipation of a mix of priority PAHs in soils by using availability enhancers. Effect of aging and pollutant interactions. Madrid F; Florido MC; Rubio-Bellido M; Villaverde J; Morillo E Sci Total Environ; 2022 Sep; 837():155744. PubMed ID: 35526632 [TBL] [Abstract][Full Text] [Related]
20. [Microbial degradation of soil polycyclic aromatic hydrocarbons (PAHs) and its relations to soil bacterial population diversity]. Wang F; Su ZC; Yang H; Li XJ; Yang GP; Dong DB Ying Yong Sheng Tai Xue Bao; 2009 Dec; 20(12):3020-6. PubMed ID: 20353072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]