BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30743988)

  • 21. Structure and activity of the Streptomyces coelicolor A3(2) β-N-acetylhexosaminidase provides further insight into GH20 family catalysis and inhibition.
    Thi NN; Offen WA; Shareck F; Davies GJ; Doucet N
    Biochemistry; 2014 Mar; 53(11):1789-800. PubMed ID: 24559145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional characterization of Streptomyces plicatus beta-N-acetylhexosaminidase by comparative molecular modeling and site-directed mutagenesis.
    Mark BL; Wasney GA; Salo TJ; Khan AR; Cao Z; Robbins PW; James MN; Triggs-Raine BL
    J Biol Chem; 1998 Jul; 273(31):19618-24. PubMed ID: 9677388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineered N-acetylhexosamine-active enzymes in glycoscience.
    Slámová K; Bojarová P
    Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):2070-2087. PubMed ID: 28347843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 4-Deoxy-substrates for beta-N-acetylhexosaminidases: how to make use of their loose specificity.
    Slámová K; Gazák R; Bojarová P; Kulik N; Ettrich R; Pelantová H; Sedmera P; Kren V
    Glycobiology; 2010 Aug; 20(8):1002-9. PubMed ID: 20466648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic synthesis of N-acetylglucosaminyl-cyclodextrin by the reverse reaction of N-acetylhexosaminidase from jack bean.
    Hamayasu K; Fujita K; Hara K; Hashimoto H; Tanimoto T; Koizumi K; Nakano H; Kitahata S
    Biosci Biotechnol Biochem; 1999 Oct; 63(10):1677-83. PubMed ID: 10586495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational study of β-N-acetylhexosaminidase from Talaromyces flavus, a glycosidase with high substrate flexibility.
    Kulik N; Slámová K; Ettrich R; Křen V
    BMC Bioinformatics; 2015 Jan; 16():28. PubMed ID: 25627923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a novel beta-N-acetylhexosaminidase (Pcb-NAHA1) from marine Zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa, Zoanthidea).
    Souza DS; Grossi-de-Sa MF; Silva LP; Franco OL; Gomes-Junior JE; Oliveira GR; Rocha TL; Magalhães CP; Marra BM; Grossi-de-Sa M; Romano E; de Sá CM; Kombrink E; Jiménez AV; Abreu LR
    Protein Expr Purif; 2008 Mar; 58(1):61-9. PubMed ID: 18171621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular cloning, characterization and expression analysis of two beta-N-acetylhexosaminidase homologs of Coccidioides posadasii.
    Lunetta JM; Johnson SM; Pappagianis D
    Med Mycol; 2010 Aug; 48(5):744-56. PubMed ID: 20109094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular cloning and crystal structural analysis of a novel beta-N-acetylhexosaminidase from Paenibacillus sp. TS12 capable of degrading glycosphingolipids.
    Sumida T; Ishii R; Yanagisawa T; Yokoyama S; Ito M
    J Mol Biol; 2009 Sep; 392(1):87-99. PubMed ID: 19524595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural basis for the substrate specificity of a novel β-N-acetylhexosaminidase StrH protein from Streptococcus pneumoniae R6.
    Jiang YL; Yu WL; Zhang JW; Frolet C; Di Guilmi AM; Zhou CZ; Vernet T; Chen Y
    J Biol Chem; 2011 Dec; 286(50):43004-12. PubMed ID: 22013074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterologous expression and characterization of an N-acetyl-β-D-hexosaminidase from Lactococcus lactis ssp. lactis IL1403.
    Nguyen HA; Nguyen TH; Křen V; Eijsink VG; Haltrich D; Peterbauer CK
    J Agric Food Chem; 2012 Mar; 60(12):3275-81. PubMed ID: 22356128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. De novo design of a trans-β-N-acetylglucosaminidase activity from a GH1 β-glycosidase by mechanism engineering.
    André-Miral C; Koné FM; Solleux C; Grandjean C; Dion M; Tran V; Tellier C
    Glycobiology; 2015 Apr; 25(4):394-402. PubMed ID: 25378480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loop Protein Engineering for Improved Transglycosylation Activity of a β-N-Acetylhexosaminidase.
    Jamek SB; Muschiol J; Holck J; Zeuner B; Busk PK; Mikkelsen JD; Meyer AS
    Chembiochem; 2018 Sep; 19(17):1858-1865. PubMed ID: 29911342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of p-nitrophenyl sulfated disaccharides with beta-D-(6-sulfo)-GlcNAc units using beta-N-acetylhexosaminidase from Aspergillus oryzae in a transglycosylation reaction.
    Zeng X; Sun Y; Ye H; Liu J; Uzawa H
    Biotechnol Lett; 2007 Jul; 29(7):1105-10. PubMed ID: 17492477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient sequential synthesis of lacto-N-triose II and lacto-N-neotetraose by a novel β-N-acetylhexosaminidase from Tyzzerella nexilis.
    Liu YH; Wang L; Huang P; Jiang ZQ; Yan QJ; Yang SQ
    Food Chem; 2020 Dec; 332():127438. PubMed ID: 32645671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of Chitin Oligosaccharides Using Dried Stenotrophomonas maltophilia Cells Containing a Transglycosylation Reaction-Catalyzing β-N-Acetylhexosaminidase as a Whole-Cell Catalyst.
    Uehara A; Takahashi N; Moriyama M; Hirano T; Hakamata W; Nishio T
    Appl Biochem Biotechnol; 2018 Feb; 184(2):673-684. PubMed ID: 28840460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of an active acidic residue in the catalytic site of beta-hexosaminidase.
    Tse R; Vavougios G; Hou Y; Mahuran DJ
    Biochemistry; 1996 Jun; 35(23):7599-607. PubMed ID: 8652542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification and characterization of beta-N-acetylhexosaminidase from maize seedlings.
    Oikawa A; Itoh E; Ishihara A; Iwamura H
    J Plant Physiol; 2003 Sep; 160(9):991-9. PubMed ID: 14593799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Second β-Hexosaminidase Encoded in the Streptococcus pneumoniae Genome Provides an Expanded Biochemical Ability to Degrade Host Glycans.
    Robb M; Robb CS; Higgins MA; Hobbs JK; Paton JC; Boraston AB
    J Biol Chem; 2015 Dec; 290(52):30888-900. PubMed ID: 26491009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleotide binding as an allosteric regulatory mechanism for
    Li CC; Yi H; Wang YM; Tang XY; Zhu YB; Song YJ; Zhao NL; Huang Q; Mou XY; Luo GH; Liu TG; Yang GL; Zeng YJ; Wang LJ; Tang H; Fan G; Bao R
    Gut Microbes; 2022; 14(1):2143221. PubMed ID: 36394293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.