These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30744051)

  • 1. Fast identification of Bacteria for Quality Control of Drinking Water through A Static Headspace Sampler Coupled to a Sensory Perception System.
    Carrillo J; Durán C
    Biosensors (Basel); 2019 Feb; 9(1):. PubMed ID: 30744051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry.
    Boots AW; Smolinska A; van Berkel JJ; Fijten RR; Stobberingh EE; Boumans ML; Moonen EJ; Wouters EF; Dallinga JW; Van Schooten FJ
    J Breath Res; 2014 Jun; 8(2):027106. PubMed ID: 24737039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GC-IMS headspace analyses allow early recognition of bacterial growth and rapid pathogen differentiation in standard blood cultures.
    Drees C; Vautz W; Liedtke S; Rosin C; Althoff K; Lippmann M; Zimmermann S; Legler TJ; Yildiz D; Perl T; Kunze-Szikszay N
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9091-9101. PubMed ID: 31664484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new analytical platform based on field-flow fractionation and olfactory sensor to improve the detection of viable and non-viable bacteria in food.
    Roda B; Mirasoli M; Zattoni A; Casale M; Oliveri P; Bigi A; Reschiglian P; Simoni P; Roda A
    Anal Bioanal Chem; 2016 Oct; 408(26):7367-77. PubMed ID: 27520323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS.
    Ratiu IA; Bocos-Bintintan V; Patrut A; Moll VH; Turner M; Thomas CLP
    Anal Chim Acta; 2017 Aug; 982():209-217. PubMed ID: 28734362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Headspace-programmed temperature vaporizer-mass spectrometry and pattern recognition techniques for the analysis of volatiles in saliva samples.
    Pérez Antón A; Del Nogal Sánchez M; Crisolino Pozas ÁP; Pérez Pavón JL; Moreno Cordero B
    Talanta; 2016 Nov; 160():21-27. PubMed ID: 27591583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile compound profiling for the identification of Gram-negative bacteria by ion-molecule reaction-mass spectrometry.
    Dolch ME; Hornuss C; Klocke C; Praun S; Villinger J; Denzer W; Schelling G; Schubert S
    J Appl Microbiol; 2012 Nov; 113(5):1097-105. PubMed ID: 22830412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the Bacterial Contamination and Antibiotic Susceptibility Profile of Bacteria Isolated from Bottled Drinking Water.
    Hamad AA; Sharaf M; Hamza MA; Selim S; Hetta HF; El-Kazzaz W
    Microbiol Spectr; 2022 Feb; 10(1):e0151621. PubMed ID: 35044197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of volatile organic compounds of breath and urine for distinguishing patients with liver cirrhosis from healthy controls by using electronic nose and voltammetric electronic tongue.
    Zaim O; Diouf A; El Bari N; Lagdali N; Benelbarhdadi I; Ajana FZ; Llobet E; Bouchikhi B
    Anal Chim Acta; 2021 Nov; 1184():339028. PubMed ID: 34625262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistant/susceptible classification of respiratory tract pathogenic bacteria based on volatile organic compounds profiling.
    Karami N; Rezadoost H; Mirzajani F; Karimi A; Ghassempour A; Aliahmadi A; Fallah F
    Cell Mol Biol (Noisy-le-grand); 2018 Jun; 64(9):6-15. PubMed ID: 30030949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteria classification using Cyranose 320 electronic nose.
    Dutta R; Hines EL; Gardner JW; Boilot P
    Biomed Eng Online; 2002 Oct; 1():4. PubMed ID: 12437783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Lab-Made E-Nose-MOS Device for Assessing the Bacterial Growth in a Solid Culture Medium.
    Dias T; Santos VS; Zorgani T; Ferreiro N; Rodrigues AI; Zaghdoudi K; Veloso ACA; Peres AM
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Headspace analyses using multi-capillary column-ion mobility spectrometry allow rapid pathogen differentiation in hospital-acquired pneumonia relevant bacteria.
    Kunze-Szikszay N; Euler M; Kuhns M; Thieß M; Groß U; Quintel M; Perl T
    BMC Microbiol; 2021 Feb; 21(1):69. PubMed ID: 33641676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid prediction of deoxynivalenol contamination in wheat bran by MOS-based electronic nose and characterization of the relevant pattern of volatile compounds.
    Lippolis V; Cervellieri S; Damascelli A; Pascale M; Di Gioia A; Longobardi F; De Girolamo A
    J Sci Food Agric; 2018 Oct; 98(13):4955-4962. PubMed ID: 29577312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS).
    Taylor C; Lough F; Stanforth SP; Schwalbe EC; Fowlis IA; Dean JR
    Anal Bioanal Chem; 2017 Jul; 409(17):4247-4256. PubMed ID: 28484808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid classification of hairtail fish and pork freshness using an electronic nose based on the PCA method.
    Tian XY; Cai Q; Zhang YM
    Sensors (Basel); 2012; 12(1):260-77. PubMed ID: 22368468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Organic-Inorganic Hybrid Optical Gas Sensors for the Non-Invasive Monitoring of Pathogenic Bacteria.
    Kladsomboon S; Thippakorn C; Seesaard T
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30241405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial quality of drinking water from microfiltered water dispensers.
    Sacchetti R; De Luca G; Dormi A; Guberti E; Zanetti F
    Int J Hyg Environ Health; 2014 Mar; 217(2-3):255-9. PubMed ID: 23838062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensors' array of aspiration ion mobility spectrometer as a tool for bacteria discrimination.
    Bocos-Bintintan V; Thomas CLP; Ratiu IA
    Talanta; 2020 Jan; 206():120233. PubMed ID: 31514847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.