These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3074407)

  • 1. [Completely implantable artificial heart].
    Matsuura Y; Hamanaka Y; Fukunaga S; Yamada H
    Kokyu To Junkan; 1988 Dec; 36(12):1281-9. PubMed ID: 3074407
    [No Abstract]   [Full Text] [Related]  

  • 2. [What should be solved for totally implantable artificial heart?].
    Tsuchiya K; Fujimasa I
    Rinsho Kyobu Geka; 1987; 7(3):259-61. PubMed ID: 9301787
    [No Abstract]   [Full Text] [Related]  

  • 3. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.
    Yamamoto T; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2008; 11(4):238-40. PubMed ID: 19184291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An implantable power source for an artificial heart or left ventricular assist device.
    Spitzer D
    Trans Am Soc Artif Intern Organs; 1985; 31():193-5. PubMed ID: 3837443
    [No Abstract]   [Full Text] [Related]  

  • 5. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; BĂ©langer G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Blood heat exchangers for the artificial heart using a radioisotope power source].
    Kiselev IuM; Trukhmanov SB; Mosidze TG; Kremnev VA; Ponomarenko TP
    Med Tekh; 1979; (3):9-13. PubMed ID: 459782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Automatic control of an artificial heart with an autonomous energy source].
    Sumin AV; Sokolov AI; Itkin GP; Kremnev VA; Kiselev IuM
    Med Tekh; 1980; (2):44-8. PubMed ID: 7392877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An implantable ventricular assist system: chronic in vivo performance.
    Igo SR; Fuqua JM; McGee MG; Creager GJ; Pool GE; Krudewig TW; Frazier GH
    Trans Am Soc Artif Intern Organs; 1984; 30():81-5. PubMed ID: 6533974
    [No Abstract]   [Full Text] [Related]  

  • 9. Transcutaneous Energy Transmission System for a Totally Implantable Artificial Heart Using a Two-Wire Archimedean Spiral Coil.
    Okinaga T; Yamamoto T; Koshiji K
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5407-5410. PubMed ID: 34892349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic power transfer system.
    Brueschke EE; Hauser R; McNally R; Haklin M; Giuffre V; Mayerhofer K; Welsh T; English K
    Trans Am Soc Artif Intern Organs; 1981; 27():84-9. PubMed ID: 7331166
    [No Abstract]   [Full Text] [Related]  

  • 11. An implantable nuclear fuel capsule for an artificial heart.
    Norman JC; Covelli VH; Bernhard WF; Spira J
    Trans Am Soc Artif Intern Organs; 1968; 14():204-9. PubMed ID: 5701531
    [No Abstract]   [Full Text] [Related]  

  • 12. An electric motor-driven total artificial heart: seven months survival in the calf.
    Rosenberg G; Snyder AJ; Landis DL; Geselowitz DB; Donachy JH; Pierce WS
    Trans Am Soc Artif Intern Organs; 1984; 30():69-74. PubMed ID: 6533958
    [No Abstract]   [Full Text] [Related]  

  • 13. In vivo evaluations of a transcutaneous energy transmission (TET) system.
    Sherman C; Daly BD; Clay W; Dasse K; Handrahan J; Haudenschild C
    Trans Am Soc Artif Intern Organs; 1984; 30():143-7. PubMed ID: 6398544
    [No Abstract]   [Full Text] [Related]  

  • 14. Percutaneous energy transmission systems: factors influencing long-term implantation.
    Daly BD; Szycher M; Dasse K; Worthington M; Robinson WJ; Huadenschild CC; Poirier VL; Cleveland RJ
    Trans Am Soc Artif Intern Organs; 1981; 27():147-50. PubMed ID: 7331069
    [No Abstract]   [Full Text] [Related]  

  • 15. Approaches to the artificial heart.
    Jacobs G; Harasaki H; Kiraly R; Golding L; Nose Y
    Transplant Proc; 1984 Jun; 16(3):893-7. PubMed ID: 6729954
    [No Abstract]   [Full Text] [Related]  

  • 16. Adaptive transcutaneous power delivery for an artificial anal sphincter system.
    Zan P; Yan G; Liu H; Luo N; Zhao Y
    J Med Eng Technol; 2009; 33(2):136-41. PubMed ID: 19085203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of unifying transcutaneous transformer for transmission of energy and information.
    Tamura N; Yamamoto T; Aoki H; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2009; 12(2):138-40. PubMed ID: 19536632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of the solar cell system for recharging the external battery of the totally-implantable artificial heart.
    Tchin-Iou AV; Min BG
    Int J Artif Organs; 1999 Dec; 22(12):823-6. PubMed ID: 10654879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting left-right heart output differences in artificial heart implanted animals.
    Tanaka T; Takatani S; Umezu M; Nakatani T; Adachi S; Noda H; Fukuda S; Takano H; Akutsu T
    Trans Am Soc Artif Intern Organs; 1985; 31():211-5. PubMed ID: 3837446
    [No Abstract]   [Full Text] [Related]  

  • 20. A transcutaneous power transformer.
    Myers GH; Reed GE; Thumin A; Fascher S; Cortes L
    Trans Am Soc Artif Intern Organs; 1968; 14():210-4. PubMed ID: 5701532
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.