These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2405 related articles for article (PubMed ID: 30744084)
1. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Quan NV; Xuan TD; Tran HD; Thuy NTD; Trang LT; Huong CT; Andriana Y; Tuyen PT Molecules; 2019 Feb; 24(3):. PubMed ID: 30744084 [TBL] [Abstract][Full Text] [Related]
2. Medicinal properties of Ocotea bullata stem bark extracts: phytochemical constituents, antioxidant and anti-inflammatory activity, cytotoxicity and inhibition of carbohydrate-metabolizing enzymes. Ogundajo AL; Adeniran LA; Ashafa AO J Integr Med; 2018 Mar; 16(2):132-140. PubMed ID: 29526237 [TBL] [Abstract][Full Text] [Related]
3. Das SK; Dash S; Thatoi H; Patra JK Comb Chem High Throughput Screen; 2020; 23(9):945-954. PubMed ID: 32342807 [TBL] [Abstract][Full Text] [Related]
4. Chromatographic Separation of Dall'Acqua S; Sinan KI; Ferrarese I; Sut S; Bene K; Mahomoodally MF; Bibi Sadeer N; Ak G; Zengin G Molecules; 2020 Nov; 25(23):. PubMed ID: 33255853 [No Abstract] [Full Text] [Related]
5. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Sabiu S; O'Neill FH; Ashafa AOT J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829 [TBL] [Abstract][Full Text] [Related]
6. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe Afolabi OB; Oloyede OI; Agunbiade SO J Integr Med; 2018 May; 16(3):192-198. PubMed ID: 29706572 [TBL] [Abstract][Full Text] [Related]
7. Alpha-Amylase and Alpha-Glucosidase Enzyme Inhibition and Antioxidant Potential of 3-Oxolupenal and Katononic Acid Isolated from Alqahtani AS; Hidayathulla S; Rehman MT; ElGamal AA; Al-Massarani S; Razmovski-Naumovski V; Alqahtani MS; El Dib RA; AlAjmi MF Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31905962 [No Abstract] [Full Text] [Related]
8. Evaluation of the Enzyme Inhibitory and Antioxidant Activities of Roheem FO; Mat Soad SZ; Ahmed QU; Ali Shah SA; Latip J; Zakaria ZA Molecules; 2019 Mar; 24(6):. PubMed ID: 30871172 [TBL] [Abstract][Full Text] [Related]
9. Identification of highly potent α-glucosidase inhibitory and antioxidant constituents from Zizyphus rugosa bark: enzyme kinetic and molecular docking studies with active metabolites. Sichaem J; Aree T; Lugsanangarm K; Tip-Pyang S Pharm Biol; 2017 Dec; 55(1):1436-1441. PubMed ID: 28320255 [TBL] [Abstract][Full Text] [Related]
10. Antioxidant, Xanthine Oxidase, α-Amylase and α-Glucosidase Inhibitory Activities of Bioactive Compounds from Minh TN; Van TM; Andriana Y; Vinh LT; Hau DV; Duyen DH; Guzman-Gelani C Molecules; 2019 Oct; 24(21):. PubMed ID: 31671906 [TBL] [Abstract][Full Text] [Related]
11. Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Justino AB; Miranda NC; Franco RR; Martins MM; Silva NMD; Espindola FS Biomed Pharmacother; 2018 Apr; 100():83-92. PubMed ID: 29425747 [TBL] [Abstract][Full Text] [Related]
12. Phytochemical Composition, Antibacterial, Antioxidant and Antidiabetic Potentials of Abed SN; Bibi S; Jan M; Talha M; Islam NU; Zahoor M; Al-Joufi FA Molecules; 2022 Sep; 27(19):. PubMed ID: 36234897 [No Abstract] [Full Text] [Related]
13. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L. Zhao Y; Kongstad KT; Jäger AK; Nielsen J; Staerk D J Chromatogr A; 2018 Jun; 1556():55-63. PubMed ID: 29729863 [TBL] [Abstract][Full Text] [Related]
14. A trisaccharide phenylethanoid glycoside from Scrophularia flava Grau with potential anti-type 2 diabetic properties by inhibiting α-glucosidase enzyme and decreasing oxidative stress. Hamedi A; Pasdaran A; Pasdaran A Bioorg Chem; 2020 Jun; 99():103776. PubMed ID: 32276136 [TBL] [Abstract][Full Text] [Related]
15. Phytochemical Analysis, Network Pharmacology and in Silico Investigations on Mahomoodally MF; Picot-Allain MCN; Zengin G; Llorent-Martínez EJ; Abdullah HH; Ak G; Senkardes I; Chiavaroli A; Menghini L; Recinella L; Brunetti L; Leone S; Orlando G; Ferrante C Molecules; 2020 May; 25(10):. PubMed ID: 32455936 [No Abstract] [Full Text] [Related]
16. Kifle ZD; Debeb SG; Belayneh YM Biomed Res Int; 2021; 2021():6652777. PubMed ID: 33987444 [TBL] [Abstract][Full Text] [Related]
17. Chemical Constituents of Muehlenbeckia tamnifolia (Kunth) Meisn (Polygonaceae) and Its In Vitro α-Amilase and α-Glucosidase Inhibitory Activities. Torres-Naranjo M; Suárez A; Gilardoni G; Cartuche L; Flores P; Morocho V Molecules; 2016 Nov; 21(11):. PubMed ID: 27827864 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of phytochemical profile, and antioxidant, antidiabetic activities of indigenous Thai fruits. Prakulanon J; Duangsrisai S; Vajrodaya S; Thongchin T PeerJ; 2024; 12():e17681. PubMed ID: 39011385 [TBL] [Abstract][Full Text] [Related]
19. Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ouahabi S; Daoudi NE; Loukili EH; Asmae H; Merzouki M; Bnouham M; Challioui A; Hammouti B; Fauconnier ML; Rhazi L; Ayerdi Gotor A; Depeint F; Ramdani M Mar Drugs; 2024 May; 22(6):. PubMed ID: 38921551 [TBL] [Abstract][Full Text] [Related]