These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30744223)

  • 21. Potential role of two cytochrome P450s obtained from Lithospermum erythrorhizon in catalyzing the oxidation of geranylhydroquinone during Shikonin biosynthesis.
    Song W; Zhuang Y; Liu T
    Phytochemistry; 2020 Jul; 175():112375. PubMed ID: 32305685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-Wide Identification of
    Wang X; He Z; Yang H; He C; Wang C; Fazal A; Lai X; Yang L; Wen Z; Yang M; Ma S; Jie W; Cai J; Yin T; Liu B; Yang Y; Qi J
    Life (Basel); 2022 Nov; 12(11):. PubMed ID: 36362930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simple and efficient genetic transformation method of Ganoderma weberianum.
    Zhou YP; Chen MH; Lu JJ; Kang X; Chen QH; Huang XL; Tian CE
    Folia Microbiol (Praha); 2015 Sep; 60(5):417-23. PubMed ID: 25655754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Establishment of in vitro culture system for
    Yang J; Yang X; Li B; Lu X; Kang J; Cao X
    3 Biotech; 2020 Mar; 10(3):137. PubMed ID: 32158633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The shikonin derivatives and pyrrolizidine alkaloids in hairy root cultures of Lithospermum canescens (Michx.) Lehm.
    Pietrosiuk A; Sykłowska-Baranek K; Wiedenfeld H; Wolinowska R; Furmanowa M; Jaroszyk E
    Plant Cell Rep; 2006 Oct; 25(10):1052-8. PubMed ID: 16670900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poison ivy hairy root cultures enable a stable transformation system suitable for detailed investigation of urushiol metabolism.
    Lott AA; Freed CP; Dickinson CC; Whitehead SR; Collakova E; Jelesko JG
    Plant Direct; 2020 Aug; 4(8):e00243. PubMed ID: 32783021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Establishment of the hairy root culture of
    Fu JY; Zhao H; Bao JX; Wen ZL; Fang RJ; Fazal A; Yang MK; Liu B; Yin TM; Pang YJ; Lu GH; Qi JL; Yang YH
    3 Biotech; 2020 Oct; 10(10):429. PubMed ID: 32968614
    [No Abstract]   [Full Text] [Related]  

  • 28. Tigloylshikonin, a new minor Shikonin derivative, from the roots and the commercial root extract of lithospermum erythrorhizon.
    Ito Y; Onobori K; Yamazaki T; Kawamura Y
    Chem Pharm Bull (Tokyo); 2011; 59(1):117-9. PubMed ID: 21212559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alcohol Dehydrogenase Activity Converts 3″-Hydroxy-geranylhydroquinone to an Aldehyde Intermediate for Shikonin and Benzoquinone Derivatives in Lithospermum erythrorhizon.
    Yamamoto H; Tsukahara M; Yamano Y; Wada A; Yazaki K
    Plant Cell Physiol; 2020 Oct; 61(10):1798-1806. PubMed ID: 32810231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon : V. Differences in the production between callus and suspension cultures.
    Hara Y; Morimoto T; Fujita Y
    Plant Cell Rep; 1987 Feb; 6(1):8-11. PubMed ID: 24248438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Caffeic acid oligomers in Lithospermum erythrorhizon cell suspension cultures.
    Yamamoto H; Inoue K; Yazaki K
    Phytochemistry; 2000 Mar; 53(6):651-7. PubMed ID: 10746877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Production of shikonin by cell cultures of Lithospermum erythrorhizon].
    Hu L
    Zhong Yao Cai; 2004 May; 27(5):313-4. PubMed ID: 15376383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid de novo genome assembly of red gromwell (
    Auber RP; Suttiyut T; McCoy RM; Ghaste M; Crook JW; Pendleton AL; Widhalm JR; Wisecaver JH
    Hortic Res; 2020; 7(1):82. PubMed ID: 32528694
    [No Abstract]   [Full Text] [Related]  

  • 34. Molecular cloning and characterization of a cDNA encoding a novel apoplastic protein preferentially expressed in a shikonin-producing callus strain of Lithospermum erythrorhizon.
    Yamamura Y; Sahin FP; Nagatsu A; Mizukami H
    Plant Cell Physiol; 2003 Apr; 44(4):437-46. PubMed ID: 12721385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ethylene induced shikonin biosynthesis in shoot culture of Lithospermum erythrorhizon.
    Touno K; Tamaoka J; Ohashi Y; Shimomura K
    Plant Physiol Biochem; 2005 Feb; 43(2):101-5. PubMed ID: 15820656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Establishment of
    Sharma S; Singh Y; Verma PK; Vakhlu J
    3 Biotech; 2021 Feb; 11(2):82. PubMed ID: 33505837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of two heterologous promoters, Agrobacterium rhizogenes rolC and cauliflower mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy.
    Nilsson O; Little CH; Sandberg G; Olsson O
    Plant Mol Biol; 1996 Jul; 31(4):887-95. PubMed ID: 8806418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Establishment of transgenic Rhazya stricta hairy roots to modulate terpenoid indole alkaloid production.
    Akhgari A; Yrjönen T; Laakso I; Vuorela H; Oksman-Caldentey KM; Rischer H
    Plant Cell Rep; 2015 Nov; 34(11):1939-52. PubMed ID: 26245531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Agrobacterium rhizogenes-induced cotton hairy root culture as an alternative tool for cotton functional genomics.
    Kim HJ
    Methods Mol Biol; 2013; 958():179-87. PubMed ID: 23143493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon : I. Effects of nitrogen sources on the production of shikonin derivatives.
    Fujita Y; Hara Y; Ogino T; Suga C
    Plant Cell Rep; 1981 Dec; 1(2):59-60. PubMed ID: 24258859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.