BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30744484)

  • 1. R-TPI: rolling toxicity probability interval design to shorten the duration and maintain safety of phase I trials.
    Guo W; Ji Y; Li D
    J Biopharm Stat; 2019; 29(3):411-424. PubMed ID: 30744484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adaptive multi-stage phase I dose-finding design incorporating continuous efficacy and toxicity data from multiple treatment cycles.
    Du Y; Yin J; Sargent DJ; Mandrekar SJ
    J Biopharm Stat; 2019; 29(2):271-286. PubMed ID: 30403559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified toxicity probability interval design: a safer and more reliable method than the 3 + 3 design for practical phase I trials.
    Ji Y; Wang SJ
    J Clin Oncol; 2013 May; 31(14):1785-91. PubMed ID: 23569307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modified toxicity probability interval method for dose-finding trials.
    Ji Y; Liu P; Li Y; Bekele BN
    Clin Trials; 2010 Dec; 7(6):653-63. PubMed ID: 20935021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian interval dose-finding design addressingOckham's razor: mTPI-2.
    Guo W; Wang SJ; Yang S; Lynn H; Ji Y
    Contemp Clin Trials; 2017 Jul; 58():23-33. PubMed ID: 28458054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation-based comparison of the traditional method, Rolling-6 design and a frequentist version of the continual reassessment method with special attention to trial duration in pediatric Phase I oncology trials.
    Onar-Thomas A; Xiong Z
    Contemp Clin Trials; 2010 May; 31(3):259-70. PubMed ID: 20298812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of phase I dose-finding designs in clinical trials with monotonicity assumption violation.
    Abbas R; Rossoni C; Jaki T; Paoletti X; Mozgunov P
    Clin Trials; 2020 Oct; 17(5):522-534. PubMed ID: 32631095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dose-cohort designs in cancer phase I trials.
    Huang B; Chappell R
    Stat Med; 2008 May; 27(12):2070-93. PubMed ID: 17764082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of toxicity probability interval based designs in contrast to the continual reassessment method.
    Horton BJ; Wages NA; Conaway MR
    Stat Med; 2017 Jan; 36(2):291-300. PubMed ID: 27435150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-sample behavior of novel phase I cancer trial designs.
    Oron AP; Hoff PD
    Clin Trials; 2013 Feb; 10(1):63-80. PubMed ID: 23345304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The i3+3 design for phase I clinical trials.
    Liu M; Wang SJ; Ji Y
    J Biopharm Stat; 2020 Mar; 30(2):294-304. PubMed ID: 31304864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escalation with overdose control using all toxicities and time to event toxicity data in cancer Phase I clinical trials.
    Chen Z; Cui Y; Owonikoko TK; Wang Z; Li Z; Luo R; Kutner M; Khuri FR; Kowalski J
    Contemp Clin Trials; 2014 Mar; 37(2):322-32. PubMed ID: 24530487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model of a Queuing Approach for Patient Accrual in Phase 1 Oncology Studies.
    Frankel PH; Chung V; Tuscano J; Siddiqi T; Sampath S; Longmate J; Groshen S; Newman EM
    JAMA Netw Open; 2020 May; 3(5):e204787. PubMed ID: 32401317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose-finding designs in pediatric phase I clinical trials: comparison by simulations in a realistic timeline framework.
    Doussau A; Asselain B; Le Deley MC; Geoerger B; Doz F; Vassal G; Paoletti X
    Contemp Clin Trials; 2012 Jul; 33(4):657-65. PubMed ID: 22521954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keyboard: A Novel Bayesian Toxicity Probability Interval Design for Phase I Clinical Trials.
    Yan F; Mandrekar SJ; Yuan Y
    Clin Cancer Res; 2017 Aug; 23(15):3994-4003. PubMed ID: 28546227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The superiority of the time-to-event continual reassessment method to the rolling six design in pediatric oncology Phase I trials.
    Zhao L; Lee J; Mody R; Braun TM
    Clin Trials; 2011 Aug; 8(4):361-9. PubMed ID: 21610004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phase I/II seamless dose escalation/expansion with adaptive randomization scheme (SEARS).
    Pan H; Xie F; Liu P; Xia J; Ji Y
    Clin Trials; 2014 Feb; 11(1):49-59. PubMed ID: 24137041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal phase I dose-escalation trial designs in oncology--a simulation study.
    Gerke O; Siedentop H
    Stat Med; 2008 Nov; 27(26):5329-44. PubMed ID: 17849502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian Optimal Interval Design: A Simple and Well-Performing Design for Phase I Oncology Trials.
    Yuan Y; Hess KR; Hilsenbeck SG; Gilbert MR
    Clin Cancer Res; 2016 Sep; 22(17):4291-301. PubMed ID: 27407096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian adaptive design for estimating the maximum tolerated dose curve using drug combinations in cancer phase I clinical trials.
    Tighiouart M; Li Q; Rogatko A
    Stat Med; 2017 Jan; 36(2):280-290. PubMed ID: 27060889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.