BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30744535)

  • 1. Computational characterization of epitopic region within the outer membrane protein candidate in
    Bhattacharya M; Malick RC; Mondal N; Patra P; Pal BB; Patra BC; Kumar Das B
    J Biomol Struct Dyn; 2020 Feb; 38(2):450-459. PubMed ID: 30744535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer aided novel antigenic epitopes selection from the outer membrane protein sequences of Aeromonas hydrophila and its analyses.
    Bhattacharya M; Sharma AR; Sharma G; Patra P; Mondal N; Patra BC; Lee SS; Chakraborty C
    Infect Genet Evol; 2020 Aug; 82():104320. PubMed ID: 32298854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico identification of outer membrane protein (Omp) and subunit vaccine design against pathogenic Vibrio cholerae.
    Rauta PR; Ashe S; Nayak D; Nayak B
    Comput Biol Chem; 2016 Dec; 65():61-68. PubMed ID: 27769003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided vaccine designing approach against fish pathogens Edwardsiella tarda and Flavobacterium columnare using bioinformatics softwares.
    Mahendran R; Jeyabaskar S; Sitharaman G; Michael RD; Paul AV
    Drug Des Devel Ther; 2016; 10():1703-14. PubMed ID: 27284239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome-wide B and T cell epitope repertoires in outer membrane proteins of Mycobacterium avium subsp. paratuberculosis have vaccine and diagnostic relevance: a holistic approach.
    Rana A; Rub A; Akhter Y
    J Mol Recognit; 2015 Aug; 28(8):506-20. PubMed ID: 25727233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis and designing of peptide vaccine using PE-PGRS family protein of Mycobacterium ulcerans-An integrated vaccinomics approach.
    Nain Z; Karim MM; Sen MK; Adhikari UK
    Mol Immunol; 2020 Apr; 120():146-163. PubMed ID: 32126449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excavating the surface-associated and secretory proteome of Mycobacterium leprae for identifying vaccines and diagnostic markers relevant immunodominant epitopes.
    Rana A; Thakur S; Bhardwaj N; Kumar D; Akhter Y
    Pathog Dis; 2016 Dec; 74(9):. PubMed ID: 27856491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico prediction of T- and B-cell epitopes in PmpD: First step towards to the design of a Chlamydia trachomatis vaccine.
    Russi RC; Bourdin E; García MI; Veaute CMI
    Biomed J; 2018 Apr; 41(2):109-117. PubMed ID: 29866599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer aided subunit vaccine design against pathogenic Leptospira serovars.
    Umamaheswari A; Pradhan D; Hemanthkumar M
    Interdiscip Sci; 2012 Mar; 4(1):38-45. PubMed ID: 22392275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa.
    Solanki V; Tiwari M; Tiwari V
    Sci Rep; 2019 Mar; 9(1):5240. PubMed ID: 30918289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. B-cell and T-cell epitope identification with stability analysis of AI-2 import ATP-binding cassette LsrA from S. typhiIn silico approach.
    Vijayababu P; Samykannu G; Antonyraj CB; Narayanan S; Basheer Ahamed SI; Perumal P; Piramanayagam S
    Microb Pathog; 2018 Oct; 123():487-495. PubMed ID: 30098402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-epitope DnaK peptide vaccine against S.Typhi: An in silico approach.
    Verma S; Sugadev R; Kumar A; Chandna S; Ganju L; Bansal A
    Vaccine; 2018 Jun; 36(28):4014-4022. PubMed ID: 29861180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational approaches in epitope design using DNA binding proteins as vaccine candidate in Mycobacterium tuberculosis.
    Sunita ; Singhvi N; Singh Y; Shukla P
    Infect Genet Evol; 2020 Sep; 83():104357. PubMed ID: 32438080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico design of a vaccine candidate based on autotransporters and HSP against the causal agent of shigellosis, Shigella flexneri.
    León Y; Zapata L; Salas-Burgos A; Oñate A
    Mol Immunol; 2020 May; 121():47-58. PubMed ID: 32163758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immuno-informatics Analysis to Identify Novel Vaccine Candidates and Design of a Multi-Epitope Based Vaccine Candidate Against
    Kar PP; Srivastava A
    Front Immunol; 2018; 9():2213. PubMed ID: 30374343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a Recombinant
    Lange MD; Abernathy J; Farmer BD
    Front Immunol; 2019; 10():1175. PubMed ID: 31244827
    [No Abstract]   [Full Text] [Related]  

  • 17. Genome-based approaches to develop epitope-driven subunit vaccines against pathogens of infective endocarditis.
    Priyadarshini V; Pradhan D; Munikumar M; Swargam S; Umamaheswari A; Rajasekhar D
    J Biomol Struct Dyn; 2014; 32(6):876-89. PubMed ID: 24404767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of CD4+ T-cell epitope and investigation of HLA distribution for the immunogenic proteins of Burkholderia pseudomallei using in silico approaches - A key vaccine development strategy for melioidosis.
    Swetha RG; Sandhya M; Ramaiah S; Anbarasu A
    J Theor Biol; 2016 Jul; 400():11-8. PubMed ID: 27086038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational screening and characterization of putative vaccine candidates of Plasmodium vivax.
    Nanda Kumar Y; Jeyakodi G; Gunasekaran K; Jambulingam P
    J Biomol Struct Dyn; 2016 Aug; 34(8):1736-50. PubMed ID: 26338678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico epitope prediction and immunogenic analysis for penton base epitope-focused vaccine against hydropericardium syndrome in chicken.
    Aziz F; Tufail S; Shah MA; Salahuddin Shah M; Habib M; Mirza O; Iqbal M; Rahman M
    Virus Res; 2019 Nov; 273():197750. PubMed ID: 31509776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.