BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30744557)

  • 1. Genome-wide transcriptome analysis reveals the molecular mechanism of high temperature-induced floral abortion in Litchi chinensis.
    Liu H; Wang C; Chen H; Zhou B
    BMC Genomics; 2019 Feb; 20(1):127. PubMed ID: 30744557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Genes Involved in Low Temperature-Induced Senescence of Panicle Leaf in
    Wang C; Liu H; Yu S; Chen H; Hu F; Zhan H; Pan X; Lao Y; Zhong S; Zhou B
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30717231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome profiling of litchi leaves in response to low temperature reveals candidate regulatory genes and key metabolic events during floral induction.
    Zhang H; Shen J; Wei Y; Chen H
    BMC Genomics; 2017 May; 18(1):363. PubMed ID: 28486930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Transcriptomic Analysis Reveals a Regulatory Network of Oxidative Stress-Induced Flowering Signals Produced in Litchi Leaves.
    Lu X; Yu S; Lü P; Chen H; Zhong S; Zhou B
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32197528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-seq analysis of apical meristem reveals integrative regulatory network of ROS and chilling potentially related to flowering in Litchi chinensis.
    Lu X; Li J; Chen H; Hu J; Liu P; Zhou B
    Sci Rep; 2017 Aug; 7(1):10183. PubMed ID: 28860553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative effect of drought and low temperature on litchi (Litchi chinensis Sonn.) floral initiation revealed by dynamic genome-wide transcriptome analysis.
    Shen J; Xiao Q; Qiu H; Chen C; Chen H
    Sci Rep; 2016 Aug; 6():32005. PubMed ID: 27557749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promoter difference of LcFT1 is a leading cause of natural variation of flowering timing in different litchi cultivars (Litchi chinensis Sonn.).
    Ding F; Zhang S; Chen H; Su Z; Zhang R; Xiao Q; Li H
    Plant Sci; 2015 Dec; 241():128-37. PubMed ID: 26706065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic analysis of floral initiation in litchi (Litchi chinensis Sonn.) based on de novo RNA sequencing.
    Zhang HN; Wei YZ; Shen JY; Lai B; Huang XM; Ding F; Su ZX; Chen HB
    Plant Cell Rep; 2014 Oct; 33(10):1723-35. PubMed ID: 25023873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome Analysis of
    He W; Chen Y; Gao M; Zhao Y; Xu Z; Cao P; Zhang Q; Jiao Y; Li H; Wu L; Wang Y
    G3 (Bethesda); 2018 Mar; 8(4):1103-1114. PubMed ID: 29487185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Chilling-Responsive Genes in
    Zhang X; Liu H; Huang L; Zhou B
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-Seq Provides New Insights into the Molecular Events Involved in "Ball-Skin versus Bladder Effect" on Fruit Cracking in Litchi.
    Wang J; Wu XF; Tang Y; Li JG; Zhao ML
    Int J Mol Sci; 2021 Jan; 22(1):. PubMed ID: 33466443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional changes in litchi (Litchi chinensis Sonn.) inflorescences treated with uniconazole.
    Wei Y; Dong C; Zhang H; Zheng X; Shu B; Shi S; Li W
    PLoS One; 2017; 12(4):e0176053. PubMed ID: 28419137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of MV-generated ROS responsive EST clones in floral buds of Litchi chinensis Sonn.
    Liu WW; Kim HJ; Chen HB; Lu XY; Zhou BY
    Plant Cell Rep; 2013 Sep; 32(9):1361-72. PubMed ID: 23636664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of litchi XET genes in relation to fruit growth.
    Lu W; Wang Y; Jiang Y; Li J; Liu H; Duan X; Song L
    Plant Physiol Biochem; 2006; 44(11-12):707-13. PubMed ID: 17079153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'.
    Guo X; Yu C; Luo L; Wan H; Zhen N; Xu T; Tan J; Pan H; Zhang Q
    BMC Genomics; 2017 Feb; 18(1):199. PubMed ID: 28228130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential gene expression between the vigorous and dwarf litchi cultivars based on RNA-Seq transcriptome analysis.
    Hu F; Chen Z; Zhao J; Wang X; Su W; Qin Y; Hu G
    PLoS One; 2018; 13(12):e0208771. PubMed ID: 30540829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome Analysis of
    Zhang F; Cheng G; Shu X; Wang N; Wang Z
    Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883454
    [No Abstract]   [Full Text] [Related]  

  • 18. De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species.
    Lu X; Kim H; Zhong S; Chen H; Hu Z; Zhou B
    BMC Genomics; 2014 Sep; 15(1):805. PubMed ID: 25239404
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Wang C; Liu H; Huang L; Chen H; Lu X; Zhou B
    Front Plant Sci; 2022; 13():886131. PubMed ID: 35615126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic analysis of flower opening response to relatively low temperatures in Osmanthus fragrans.
    Fu J; Zhang C; Liu Y; Pang T; Dong B; Gao X; Zhu Y; Zhao H
    BMC Plant Biol; 2020 Jul; 20(1):337. PubMed ID: 32677959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.