These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30744732)

  • 1. Carbon Dioxide Captured by Metal Organic Frameworks and Its Subsequent Resource Utilization Strategy: A Review and Prospect.
    Lian X; Xu L; Chen M; Wu CE; Li W; Huang B; Cui Y
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3059-3078. PubMed ID: 30744732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in adsorption-based CO2 capture by metal-organic frameworks.
    Liu J; Thallapally PK; McGrail BP; Brown DR; Liu J
    Chem Soc Rev; 2012 Mar; 41(6):2308-22. PubMed ID: 22143077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for Improving the Functionality of Zeolitic Imidazolate Frameworks: Tailoring Nanoarchitectures for Functional Applications.
    Kaneti YV; Dutta S; Hossain MSA; Shiddiky MJA; Tung KL; Shieh FK; Tsung CK; Wu KC; Yamauchi Y
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies to Enhance Carbon Dioxide Capture in Metal-Organic Frameworks.
    Piscopo CG; Loebbecke S
    Chempluschem; 2020 Mar; 85(3):538-547. PubMed ID: 32196141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Organic Frameworks for Greenhouse Gas Applications.
    Dong A; Chen D; Li Q; Qian J
    Small; 2023 Mar; 19(10):e2201550. PubMed ID: 36563116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity.
    Zhang Z; Zhao Y; Gong Q; Li Z; Li J
    Chem Commun (Camb); 2013 Jan; 49(7):653-61. PubMed ID: 23150882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks.
    Phan A; Doonan CJ; Uribe-Romo FJ; Knobler CB; O'Keeffe M; Yaghi OM
    Acc Chem Res; 2010 Jan; 43(1):58-67. PubMed ID: 19877580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in visible-light-driven carbon dioxide reduction by metal-organic frameworks.
    Nemiwal M; Subbaramaiah V; Zhang TC; Kumar D
    Sci Total Environ; 2021 Mar; 762():144101. PubMed ID: 33360464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Organic Frameworks as Platforms for Functional Materials.
    Cui Y; Li B; He H; Zhou W; Chen B; Qian G
    Acc Chem Res; 2016 Mar; 49(3):483-93. PubMed ID: 26878085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on production of metal organic frameworks (MOF) for CO
    Ghanbari T; Abnisa F; Wan Daud WMA
    Sci Total Environ; 2020 Mar; 707():135090. PubMed ID: 31863992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Strategies in Metal-Organic Frameworks for CO
    Usman M; Iqbal N; Noor T; Zaman N; Asghar A; Abdelnaby MM; Galadima A; Helal A
    Chem Rec; 2022 Jul; 22(7):e202100230. PubMed ID: 34757694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-stable metal-organic frameworks (MOFs): rational construction and carbon dioxide capture.
    Xiao C; Tian J; Chen Q; Hong M
    Chem Sci; 2024 Jan; 15(5):1570-1610. PubMed ID: 38303941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach.
    Yazaydin AO; Snurr RQ; Park TH; Koh K; Liu J; Levan MD; Benin AI; Jakubczak P; Lanuza M; Galloway DB; Low JJ; Willis RR
    J Am Chem Soc; 2009 Dec; 131(51):18198-9. PubMed ID: 19954193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and evaluation of porous materials for carbon dioxide separation and capture.
    Bae YS; Snurr RQ
    Angew Chem Int Ed Engl; 2011 Dec; 50(49):11586-96. PubMed ID: 22021216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Framework Films and Their Potential Applications in Environmental Pollution Control.
    Ma X; Chai Y; Li P; Wang B
    Acc Chem Res; 2019 May; 52(5):1461-1470. PubMed ID: 31074608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the structure-property relationships of metal-organic frameworks for CO2 capture from flue gas.
    Wu D; Yang Q; Zhong C; Liu D; Huang H; Zhang W; Maurin G
    Langmuir; 2012 Aug; 28(33):12094-9. PubMed ID: 22827840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on carbon dioxide capture materials used for carbon dioxide capture, utilization, and storage technology: a review.
    Dang H; Guan B; Chen J; Ma Z; Chen Y; Zhang J; Guo Z; Chen L; Hu J; Yi C; Yao S; Huang Z
    Environ Sci Pollut Res Int; 2024 May; 31(23):33259-33302. PubMed ID: 38698095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Organic Frameworks for CO
    He H; Perman JA; Zhu G; Ma S
    Small; 2016 Dec; 12(46):6309-6324. PubMed ID: 27762496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development Trends in Porous Adsorbents for Carbon Capture.
    Sreenivasulu B; Sreedhar I; Suresh P; Raghavan KV
    Environ Sci Technol; 2015 Nov; 49(21):12641-61. PubMed ID: 26422294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.