These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30744736)

  • 1. CO₂ Conversion by Membrane Reactors.
    Brunetti A; Fontananova E
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3124-3134. PubMed ID: 30744736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zeolite-based catalytic membrane reactors for thermo-catalytic conversion of CO
    Gao X; Deng S; Kawi S
    iScience; 2022 Dec; 25(12):105343. PubMed ID: 36483017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress in Methanol Steam Reforming Modelling via Membrane Reactors Technology.
    Iulianelli A; Ghasemzadeh K; Basile A
    Membranes (Basel); 2018 Aug; 8(3):. PubMed ID: 30126137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Methanol Production and Utilization, with Particular Emphasis toward Hydrogen Generation via Membrane Reactor Technology.
    Dalena F; Senatore A; Basile M; Knani S; Basile A; Iulianelli A
    Membranes (Basel); 2018 Oct; 8(4):. PubMed ID: 30340434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review on the Design and Performance of Enzyme-Aided Catalysis of Carbon Dioxide in Membrane, Electrochemical Cell and Photocatalytic Reactors.
    Ahmad Rizal Lim FN; Marpani F; Anak Dilol VE; Mohamad Pauzi S; Othman NH; Alias NH; Nik Him NR; Luo J; Abd Rahman N
    Membranes (Basel); 2021 Dec; 12(1):. PubMed ID: 35054554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors.
    Bagnato G; Iulianelli A; Sanna A; Basile A
    Membranes (Basel); 2017 Mar; 7(2):. PubMed ID: 28333121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and Design Optimization of Multifunctional Membrane Reactors for Direct Methane Aromatization.
    Fouty NJ; Carrasco JC; Lima FV
    Membranes (Basel); 2017 Aug; 7(3):. PubMed ID: 28850068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Best Practices for Experiments and Reports in Photocatalytic Methane Conversion.
    Jiang Y; Li S; Fan Y; Tang Z
    Angew Chem Int Ed Engl; 2024 Jun; 63(24):e202404658. PubMed ID: 38573117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.
    Castro-Dominguez B; Mardilovich IP; Ma LC; Ma R; Dixon AG; Kazantzis NK; Ma YH
    Membranes (Basel); 2016 Sep; 6(3):. PubMed ID: 27657143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic limits of countercurrent reactor systems, with examples in membrane reactors and the ceria redox cycle.
    Bulfin B
    Phys Chem Chem Phys; 2019 Jan; 21(4):2186-2195. PubMed ID: 30644473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors.
    Pender S; Toomey M; Carton M; Eardly D; Patching JW; Colleran E; O'Flaherty V
    Water Res; 2004 Feb; 38(3):619-30. PubMed ID: 14723931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A horizontal flow biofilm reactor (HFBR) technology for the removal of methane and hydrogen sulphide at low temperatures.
    Kennelly C; Clifford E; Gerrity S; Walsh R; Rodgers M; Collins G
    Water Sci Technol; 2012; 66(9):1997-2006. PubMed ID: 22925875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane recovery from water hyacinth through whole-cell immobilization technology.
    Annachhatre AP; Khanna P
    Biotechnol Bioeng; 1987 May; 29(7):805-18. PubMed ID: 18576526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):407-25. PubMed ID: 20172020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane-Assisted Methanol Synthesis Processes and the Required Permselectivity.
    Hamedi H; Brinkmann T; Shishatskiy S
    Membranes (Basel); 2021 Aug; 11(8):. PubMed ID: 34436359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of hydrocarbon content of a reforming gas by using a hydrogenation catalyst.
    Inoue K; Kawamoto K
    Chemosphere; 2010 Jan; 78(5):599-603. PubMed ID: 20022077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermophilic (55 degrees C) conversion of methanol in methanogenic-UASB reactors: influence of sulphate on methanol degradation and competition.
    Paulo PL; Vallero MV; Treviño RH; Lettinga G; Lens PN
    J Biotechnol; 2004 Jul; 111(1):79-88. PubMed ID: 15196772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.
    Zhang S; Zhang Y; Chen J; Zhang X; Liu X
    PLoS One; 2017; 12(11):e0187802. PubMed ID: 29121067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.