These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30744736)

  • 21. Ethylene production by ODHE in catalytically modified Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) membrane reactors.
    Lobera MP; Escolástico S; Garcia-Fayos J; Serra JM
    ChemSusChem; 2012 Aug; 5(8):1587-96. PubMed ID: 22791570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.
    Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK
    J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methanogenesis in thermophilic biogas reactors.
    Ahring BK
    Antonie Van Leeuwenhoek; 1995; 67(1):91-102. PubMed ID: 7741531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly Efficient NO Decomposition via Dual-Functional Catalytic Perovskite Hollow Fiber Membrane Reactor Coupled with Partial Oxidation of Methane at Medium-Low Temperature.
    Wang Z; Li Z; Cui Y; Chen T; Hu J; Kawi S
    Environ Sci Technol; 2019 Aug; 53(16):9937-9946. PubMed ID: 31355635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inorganic Nanoparticles/Metal Organic Framework Hybrid Membrane Reactors for Efficient Photocatalytic Conversion of CO
    Maina JW; Schütz JA; Grundy L; Des Ligneris E; Yi Z; Kong L; Pozo-Gonzalo C; Ionescu M; Dumée LF
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35010-35017. PubMed ID: 28937742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermophilic (55-65 degrees C) and extreme thermophilic (70-80 degrees C) sulfate reduction in methanol and formate-fed UASB reactors.
    Vallero MV; Camarero E; Lettinga G; Lens PN
    Biotechnol Prog; 2004; 20(5):1382-92. PubMed ID: 15458321
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous biogas production from fodder beet silage as sole substrate.
    Scherer PA; Dobler S; Rohardt S; Loock R; Büttner B; Nöldeke P; Brettschuh A
    Water Sci Technol; 2003; 48(4):229-33. PubMed ID: 14531447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO
    Das S; Pérez-Ramírez J; Gong J; Dewangan N; Hidajat K; Gates BC; Kawi S
    Chem Soc Rev; 2020 May; 49(10):2937-3004. PubMed ID: 32407432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CO
    Ronda-Lloret M; Wang Y; Oulego P; Rothenberg G; Tu X; Shiju NR
    ACS Sustain Chem Eng; 2020 Nov; 8(47):17397-17407. PubMed ID: 33282570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of sulfur source on the performance and metal retention of methanol-fed UASB reactors.
    Zandvoort MH; van Hullebusch ED; Gieteling J; Lettinga G; Lens PN
    Biotechnol Prog; 2005; 21(3):839-50. PubMed ID: 15932264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of high salinity on the fate of methanol during the start-up of thermophilic (55 degrees C) sulfate reducing reactors.
    Vallero MV; Hulshoff Pol LW; Lens PN; Lettinga G
    Water Sci Technol; 2002; 45(10):121-6. PubMed ID: 12188531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures.
    Sundaresan N; Philip L
    Water Sci Technol; 2008; 58(4):819-30. PubMed ID: 18776617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics for Steam and CO2 Reforming of Methane Over Ni/La/Al2O3 Catalyst.
    Park MH; Choi BK; Park YH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5255-8. PubMed ID: 26373118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy needs versus environmental pollution: a reconciliation?
    Green L
    Science; 1967 Jun; 156(3781):1448-50. PubMed ID: 5611018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative CO2 reforming of methane in La0.6Sr0.4Co0.8Ga0.2O3-δ (LSCG) hollow fiber membrane reactor.
    Kathiraser Y; Wang Z; Kawi S
    Environ Sci Technol; 2013 Dec; 47(24):14510-7. PubMed ID: 24274713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reformer and membrane modules for methane conversion: experimental assessment and perspectives of an innovative architecture.
    De Falco M; Salladini A; Iaquaniello G
    ChemSusChem; 2011 Aug; 4(8):1157-65. PubMed ID: 21826798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide.
    Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C
    Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling Fixed Bed Membrane Reactors for Hydrogen Production through Steam Reforming Reactions: A Critical Analysis.
    Murmura MA; Cerbelli S; Annesini MC
    Membranes (Basel); 2018 Jun; 8(2):. PubMed ID: 29921794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts.
    Shi X; Guo X; Zuo J; Wang Y; Zhang M
    Waste Manag; 2018 May; 75():261-269. PubMed ID: 29449111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving biogas production from anaerobic co-digestion of Thickened Waste Activated Sludge (TWAS) and fat, oil and grease (FOG) using a dual-stage hyper-thermophilic/thermophilic semi-continuous reactor.
    Alqaralleh RM; Kennedy K; Delatolla R
    J Environ Manage; 2018 Jul; 217():416-428. PubMed ID: 29627647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.