These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30744771)

  • 1. Effects of Ti Doping on Hematite Photoanodes: More Surface States.
    Niu Y; Zhou Y; Niu P; Shen H; Ma Y
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3437-3446. PubMed ID: 30744771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.
    Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.
    Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S
    Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of the Solar Water Splitting Efficiency Mediated by Surface Segregation in Ti-Doped Hematite Nanorods.
    Stanescu S; Alun T; Dappe YJ; Ihiawakrim D; Ersen O; Stanescu D
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26593-26605. PubMed ID: 37219355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lowering the onset potential of Zr-doped hematite nanocoral photoanodes by Al co-doping and surface modification with electrodeposited Co-Pi.
    Jeong IK; Mahadik MA; Hwang JB; Chae WS; Choi SH; Jang JS
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):751-763. PubMed ID: 32818679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorine-Doped FeOOH and FeNiOOH as Dual Cocatalysts.
    Deng J; Zhang Q; Feng K; Lan H; Zhong J; Chaker M; Ma D
    ChemSusChem; 2018 Nov; 11(21):3783-3789. PubMed ID: 30215886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Modification of Hematite Photoanodes with CeO
    Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH
    ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface Engineering of CoFe-LDH Modified Ti: α-Fe
    Chang Y; Han M; Ding Y; Wei H; Zhang D; Luo H; Li X; Yan X
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring surface states by sequential doping of Ti and Mg for kinetically enhanced hematite photoanode.
    Gong L; Xie J; Liang X; Xiong J; Yi S; Zhang X; Li CM
    J Colloid Interface Sci; 2019 Apr; 542():441-450. PubMed ID: 30772507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activating a hematite nanorod photoanode via fluorine-doping and surface fluorination for enhanced oxygen evolution reaction.
    Wang C; Wei S; Li F; Long X; Wang T; Wang P; Li S; Ma J; Jin J
    Nanoscale; 2020 Feb; 12(5):3259-3266. PubMed ID: 31970358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes.
    Dunn HK; Feckl JM; Müller A; Fattakhova-Rohlfing D; Morehead SG; Roos J; Peter LM; Scheu C; Bein T
    Phys Chem Chem Phys; 2014 Nov; 16(44):24610-20. PubMed ID: 25310963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing the Influence of Doping and Surface Treatment on the Surface Carrier Dynamics in Hematite Nanorod Photoanodes.
    Gurudayal ; Peter LM; Wong LH; Abdi FF
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41265-41272. PubMed ID: 29099583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface passivation of undoped hematite nanorod arrays via aqueous solution growth for improved photoelectrochemical water splitting.
    Shen S; Li M; Guo L; Jiang J; Mao SS
    J Colloid Interface Sci; 2014 Aug; 427():20-4. PubMed ID: 24290228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrochemical performance and ultrafast dynamics of photogenerated electrons and holes in highly titanium-doped hematite.
    Paradzah AT; Maabong-Tau K; Diale M; Krüger TPJ
    Phys Chem Chem Phys; 2020 Dec; 22(46):27450-27457. PubMed ID: 33232411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Onset potential behavior in α-Fe2O3 photoanodes: the influence of surface and diffusion Sn doping on the surface states.
    Shinde PS; Choi SH; Kim Y; Ryu J; Jang JS
    Phys Chem Chem Phys; 2016 Jan; 18(4):2495-509. PubMed ID: 26698132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and Doping Engineering of Sn-Doped Hematite Nanowire Photoanodes.
    Li M; Yang Y; Ling Y; Qiu W; Wang F; Liu T; Song Y; Liu X; Fang P; Tong Y; Li Y
    Nano Lett; 2017 Apr; 17(4):2490-2495. PubMed ID: 28334530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of an ultrathin ZIF-67 layer on the surface of Sn/Ti co-doped hematite for efficient photoelectrochemical water oxidation.
    Huang P; Miao X; Wu J; Zhang P; Zhang H; Bai S; Liu W
    Dalton Trans; 2022 Jun; 51(22):8848-8854. PubMed ID: 35621155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ge-Doped Hematite with FeCoNi-B
    Wang Y; Cui S; Tian Z; Han M; Zhao T; Li W
    Small; 2024 May; ():e2400316. PubMed ID: 38716992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.