These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 30744796)
1. Composition Dependence of the β Phase Stability and Mechanical Properties of Ti-Nb Thin Films. Baatarsukh M; Bae J; Huh S; Jeong H; Choi B; Cho G; Nam T; Noh J J Nanosci Nanotechnol; 2019 Jun; 19(6):3627-3630. PubMed ID: 30744796 [TBL] [Abstract][Full Text] [Related]
2. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications. Tallarico DA; Gobbi AL; Paulin Filho PI; Maia da Costa ME; Nascente PA Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():45-9. PubMed ID: 25175186 [TBL] [Abstract][Full Text] [Related]
3. Effect of Substrate Roughness on Adhesion and Structural Properties of Ti-Ni Shape Memory Alloy Thin Film. Kim D; Lee H; Bae J; Jeong H; Choi B; Nam T; Noh J J Nanosci Nanotechnol; 2018 Sep; 18(9):6201-6205. PubMed ID: 29677767 [TBL] [Abstract][Full Text] [Related]
4. Phase Stability and Properties of Ti-Nb-Zr Thin Films and Their Dependence on Zr Addition. Yang J; Baatarsukh M; Bae J; Huh S; Jeong H; Choi B; Nam T; Noh J Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30082632 [TBL] [Abstract][Full Text] [Related]
5. In vitro biocompatibility of Ti-Mg alloys fabricated by direct current magnetron sputtering. Hieda J; Niinomi M; Nakai M; Cho K Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():1-7. PubMed ID: 26046260 [TBL] [Abstract][Full Text] [Related]
6. Effect of Zr Content on Phase Stability, Deformation Behavior, and Young's Modulus in Ti-Nb-Zr Alloys. Kim KM; Kim HY; Miyazaki S Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963854 [TBL] [Abstract][Full Text] [Related]
7. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti-Ag and Nb-Ag thin films. Wojcieszak D; Mazur M; Kaczmarek D; Mazur P; Szponar B; Domaradzki J; Kepinski L Mater Sci Eng C Mater Biol Appl; 2016 May; 62():86-95. PubMed ID: 26952401 [TBL] [Abstract][Full Text] [Related]
8. Superelasticity, corrosion resistance and biocompatibility of the Ti-19Zr-10Nb-1Fe alloy. Xue P; Li Y; Li K; Zhang D; Zhou C Mater Sci Eng C Mater Biol Appl; 2015 May; 50():179-86. PubMed ID: 25746260 [TBL] [Abstract][Full Text] [Related]
9. Crystallographic Structure Analysis of a Ti-Ta Thin Film Materials Library Fabricated by Combinatorial Magnetron Sputtering. Kadletz PM; Motemani Y; Iannotta J; Salomon S; Khare C; Grossmann L; Maier HJ; Ludwig A; Schmahl WW ACS Comb Sci; 2018 Mar; 20(3):137-150. PubMed ID: 29356502 [TBL] [Abstract][Full Text] [Related]
10. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material. Zhao D; Chang K; Ebel T; Qian M; Willumeit R; Yan M; Pyczak F J Mech Behav Biomed Mater; 2013 Dec; 28():171-82. PubMed ID: 23994942 [TBL] [Abstract][Full Text] [Related]
12. In vitro cytotoxicity and hemocompatibility studies of Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys. Wang BL; Li L; Zheng YF Biomed Mater; 2010 Aug; 5(4):044102. PubMed ID: 20683133 [TBL] [Abstract][Full Text] [Related]
13. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Fu J; Yamamoto A; Kim HY; Hosoda H; Miyazaki S Acta Biomater; 2015 Apr; 17():56-67. PubMed ID: 25676584 [TBL] [Abstract][Full Text] [Related]
14. Investigations of Effects of Intermetallic Compound on the Mechanical Properties and Shape Memory Effect of Ti-Au-Ta Biomaterials. Chiu WT; Fuchiwaki K; Umise A; Tahara M; Inamura T; Hosoda H Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640207 [TBL] [Abstract][Full Text] [Related]
15. Crystal Structure Evolution, Microstructure Formation, and Properties of Mechanically Alloyed Ultrafine-Grained Ti-Zr-Nb Alloys at 36≤Ti≤70 (at. %). Marczewski M; Miklaszewski A; Maeder X; Jurczyk M Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32012767 [TBL] [Abstract][Full Text] [Related]
16. Effect of Mo and Ta on the Mechanical and Superelastic Properties of Ti-Nb Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering. Kalita D; Rogal Ł; Berent K; Góral A; Dutkiewicz J Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067916 [TBL] [Abstract][Full Text] [Related]
17. In vitro evaluation of biocompatibility of Ti-Mo-Sn-Zr superelastic alloy. Nunome S; Kanetaka H; Kudo TA; Endoh K; Hosoda H; Igarashi K J Biomater Appl; 2015 Jul; 30(1):119-30. PubMed ID: 25659946 [TBL] [Abstract][Full Text] [Related]
18. Influence of the Silver Content on Mechanical Properties of Ti-Cu-Ag Thin Films. Rashid S; Sebastiani M; Mughal MZ; Daniel R; Bemporad E Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33572136 [TBL] [Abstract][Full Text] [Related]
19. Mechanical Properties and Biocompatibility of Ti-doped Diamond-like Carbon Films. Zhang M; Xie T; Qian X; Zhu Y; Liu X ACS Omega; 2020 Sep; 5(36):22772-22777. PubMed ID: 32954124 [TBL] [Abstract][Full Text] [Related]
20. Electronic Origin of α″ to β Phase Transformation in Ti-Nb-Based Thin Films upon Hf Microalloying. Gutiérrez Moreno JJ; Panagiotopoulos NT; Evangelakis GA; Lekka CE Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32178419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]