These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30744798)

  • 1. Highly Sensitive Picric Acid Chemical Sensor Based on Samarium (Sm) Doped ZnO Nanorods.
    Al-Hadeethi Y; Umar A; Singh K; Ibrahim AA; Al-Heniti SH; Raffah BM; Cochis A
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3637-3642. PubMed ID: 30744798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Highly-Sensitive Picric Acid Chemical Sensor Based on ZnO Nanopeanuts.
    Ibrahim AA; Tiwari P; Al-Assiri MS; Al-Salami AE; Umar A; Kumar R; Kim SH; Ansari ZA; Baskoutas S
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-Doped ZnO Hexagonal Stepped Nanorods and Nanodisks as Potential Scaffold for Highly-Sensitive Phenyl Hydrazine Chemical Sensors.
    Umar A; Kim SH; Kumar R; Al-Assiri MS; Al-Salami AE; Ibrahim AA; Baskoutas S
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29160823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ytterbium-Doped ZnO Flowers Based Phenyl Hydrazine Chemical Sensor.
    Al-Hadeethi Y; Umar A; Singh K; Ibrahim AA; Al-Heniti SH; Raffah BM
    J Nanosci Nanotechnol; 2019 Jul; 19(7):4199-4204. PubMed ID: 30764993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of a highly sensitive hydroquinone chemical sensor based on iron-doped ZnO nanorods.
    Umar A; Al-Hajry A; Ahmad R; Ansari SG; Al-Assiri MS; Algarni H
    Dalton Trans; 2015 Dec; 44(48):21081-7. PubMed ID: 26592548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber optic magnetic field sensor using Co doped ZnO nanorods as cladding.
    Narasimman S; Balakrishnan L; Alex ZC
    RSC Adv; 2018 May; 8(33):18243-18251. PubMed ID: 35541100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of cation doping on the morphology, optical and structural properties of highly oriented wurtzite ZnO-nanorod arrays grown by a hydrothermal method.
    Hassanpour A; Guo P; Shen S; Bianucci P
    Nanotechnology; 2017 Oct; 28(43):435707. PubMed ID: 28786398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and properties of Ag-doped ZnO nanoflowers for highly sensitive phenyl hydrazine chemical sensor application.
    Ibrahim AA; Dar GN; Zaidi SA; Umar A; Abaker M; Bouzid H; Baskoutas S
    Talanta; 2012 May; 93():257-63. PubMed ID: 22483908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of performance tailoring of the multifunctional sensor using transition metal (Fe) doped ZnO nanorods synthesized via a facile solution-based method.
    Ramany K; Shankararajan R; Savarimuthu K; Venkatachalapathi S; Gunasekaran I; Rajamanickam G; Perumalsamy R
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34624882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods.
    Panigrahy B; Aslam M; Bahadur D
    Nanotechnology; 2012 Mar; 23(11):115601. PubMed ID: 22370332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive hydrazine chemical sensor fabricated by modified electrode of vertically aligned zinc oxide nanorods.
    Ameen S; Akhtar MS; Shin HS
    Talanta; 2012 Oct; 100():377-83. PubMed ID: 23141352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Synthesis of Sensitive Cu-ZnO Nanorod-Based Sensor for Hydrogen Peroxide Sensing.
    Arsalan M; Saddique I; Baoji M; Awais A; Khan I; Shamseldin MA; Mehrez S
    Front Chem; 2022; 10():932985. PubMed ID: 35873040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion-Driven Al-Doping of ZnO Nanorods and Stretchable Gas Sensors Made of Doped ZnO Nanorods/Ag Nanowires Bilayers.
    Namgung G; Ta QTH; Yang W; Noh JS
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1411-1419. PubMed ID: 30525384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZnO nanorods based hydrazine sensors.
    Umar A; Rahman MM; Hahn YB
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4686-91. PubMed ID: 19928135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ag-Doped ZnO Nanoparticles for Enhanced Ethanol Gas Sensing Application.
    Umar A; Khan MA; Kumar R; Algarni H
    J Nanosci Nanotechnol; 2018 May; 18(5):3557-3562. PubMed ID: 29442866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method.
    Raja K; Ramesh PS; Geetha D
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():19-24. PubMed ID: 24177864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, Characterization, Photocatalytic and Sensing Properties of Mn-Doped ZnO Nanoparticles.
    Kumar M; Negi K; Chauhan S; Umar A; Kumar R; Masuda Y; Chauhan MS
    J Nanosci Nanotechnol; 2019 Dec; 19(12):8095-8103. PubMed ID: 31196331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic performance of novel samarium-doped spherical-like ZnO hierarchical nanostructures under visible light irradiation for 2,4-dichlorophenol degradation.
    Sin JC; Lam SM; Lee KT; Mohamed AR
    J Colloid Interface Sci; 2013 Jul; 401():40-9. PubMed ID: 23618322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoactivated water-disinfecting, and biological properties of Ag NPs@Sm-doped ZnO nanorods/cuttlefish bone composite: In-vitro bactericidal, cercaricidal and schistosomicidal studies.
    Darwish AS; Bayaumy FEA; Ismail HM
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():996-1011. PubMed ID: 30274138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method.
    Kuriakose S; Satpati B; Mohapatra S
    Phys Chem Chem Phys; 2014 Jul; 16(25):12741-9. PubMed ID: 24830365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.