These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
406 related articles for article (PubMed ID: 30744864)
41. Characterization of free and bound volatile compounds in six Ribes nigrum L. blackcurrant cultivars. Liu Y; Wang S; Ren J; Yuan G; Li Y; Zhang B; Zhu B Food Res Int; 2018 Jan; 103():301-315. PubMed ID: 29389620 [TBL] [Abstract][Full Text] [Related]
42. A comparative study on the bioavailability of phenolic compounds from organic and nonorganic red grapes. Iglesias-Carres L; Mas-Capdevila A; Bravo FI; Aragonès G; Arola-Arnal A; Muguerza B Food Chem; 2019 Nov; 299():125092. PubMed ID: 31280001 [TBL] [Abstract][Full Text] [Related]
43. Phytochemical profiles of rice and their cellular antioxidant activity against ABAP induced oxidative stress in human hepatocellular carcinoma HepG2 cells. Gong ES; Liu C; Li B; Zhou W; Chen H; Li T; Wu J; Zeng Z; Wang Y; Si X; Lang Y; Zhang Y; Zhang W; Zhang G; Luo S; Liu RH Food Chem; 2020 Jul; 318():126484. PubMed ID: 32151923 [TBL] [Abstract][Full Text] [Related]
44. Anthocyanin-flavanol condensation products from black currant (Ribes nigrum L.). McDougall GJ; Gordon S; Brennan R; Stewart D J Agric Food Chem; 2005 Oct; 53(20):7878-85. PubMed ID: 16190645 [TBL] [Abstract][Full Text] [Related]
45. Sapucaia nut (Lecythis pisonis Cambess) and its by-products: A promising and underutilized source of bioactive compounds. Part II: Phenolic compounds profile. Demoliner F; de Britto Policarpi P; Vasconcelos LFL; Vitali L; Micke GA; Block JM Food Res Int; 2018 Oct; 112():434-442. PubMed ID: 30131155 [TBL] [Abstract][Full Text] [Related]
46. UHPLC-ESI-HRMS/MS analysis on phenolic compositions of different E Se tea extracts and their antioxidant and cytoprotective activities. Fan Z; Wang Y; Yang M; Cao J; Khan A; Cheng G Food Chem; 2020 Jul; 318():126512. PubMed ID: 32135418 [TBL] [Abstract][Full Text] [Related]
47. High variability in flavonoid contents and composition between different North-European currant (Ribes spp.) varieties. Mattila PH; Hellström J; Karhu S; Pihlava JM; Veteläinen M Food Chem; 2016 Aug; 204():14-20. PubMed ID: 26988470 [TBL] [Abstract][Full Text] [Related]
48. Biochemical profiling and chemometric analysis of seventeen UK-grown black currant cultivars. Bordonaba JG; Terry LA J Agric Food Chem; 2008 Aug; 56(16):7422-30. PubMed ID: 18642846 [TBL] [Abstract][Full Text] [Related]
49. Comparison of polyphenol, anthocyanin and antioxidant capacity in four varieties of Lonicera caerulea berry extracts. Wang Y; Zhu J; Meng X; Liu S; Mu J; Ning C Food Chem; 2016 Apr; 197(Pt A):522-9. PubMed ID: 26616984 [TBL] [Abstract][Full Text] [Related]
50. Contribution of Anthocyanin Composition to Total Antioxidant Capacity of Berries. Lee SG; Vance TM; Nam TG; Kim DO; Koo SI; Chun OK Plant Foods Hum Nutr; 2015 Dec; 70(4):427-32. PubMed ID: 26515081 [TBL] [Abstract][Full Text] [Related]
51. Effect of high hydrostatic pressure and drying methods on phenolic compounds profile of jabuticaba (Myrciaria jaboticaba) peel and seed. Pimenta Inada KO; Nunes S; Martínez-Blázquez JA; Tomás-Barberán FA; Perrone D; Monteiro M Food Chem; 2020 Mar; 309():125794. PubMed ID: 31784074 [TBL] [Abstract][Full Text] [Related]
52. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Arruda HS; Pereira GA; de Morais DR; Eberlin MN; Pastore GM Food Chem; 2018 Apr; 245():738-749. PubMed ID: 29287435 [TBL] [Abstract][Full Text] [Related]
53. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. Mikulic-Petkovsek M; Schmitzer V; Slatnar A; Stampar F; Veberic R J Food Sci; 2012 Oct; 77(10):C1064-70. PubMed ID: 22924969 [TBL] [Abstract][Full Text] [Related]
54. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Kwaw E; Ma Y; Tchabo W; Apaliya MT; Wu M; Sackey AS; Xiao L; Tahir HE Food Chem; 2018 Jun; 250():148-154. PubMed ID: 29412905 [TBL] [Abstract][Full Text] [Related]
55. Phenolic compounds in berries of black, red, green, and white currants (Ribes sp.). Maatta K; Kamal-Eldin A; Törrönen R Antioxid Redox Signal; 2001 Dec; 3(6):981-93. PubMed ID: 11813993 [TBL] [Abstract][Full Text] [Related]
56. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Belwal T; Dhyani P; Bhatt ID; Rawal RS; Pande V Food Chem; 2016 Sep; 207():115-24. PubMed ID: 27080887 [TBL] [Abstract][Full Text] [Related]
57. High-performance liquid chromatography analysis of black currant (Ribes nigrum L.) fruit phenolics grown either conventionally or organically. Anttonen MJ; Karjalainen RO J Agric Food Chem; 2006 Oct; 54(20):7530-8. PubMed ID: 17002418 [TBL] [Abstract][Full Text] [Related]
58. Regulation of the phenolic profile of berries can increase their antioxidant activity. Hudec J; Kochanová R; Burdová M; Kobida L; Kogan G; Turianica I; Chlebo P; Hanácková E; Slamka P J Agric Food Chem; 2009 Mar; 57(5):2022-9. PubMed ID: 19209908 [TBL] [Abstract][Full Text] [Related]
59. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. Borges G; Degeneve A; Mullen W; Crozier A J Agric Food Chem; 2010 Apr; 58(7):3901-9. PubMed ID: 20000747 [TBL] [Abstract][Full Text] [Related]
60. Flavonol glycosides and other phenolic compounds in buds and leaves of different varieties of black currant (Ribes nigrum L.) and changes during growing season. Liu P; Kallio H; Yang B Food Chem; 2014 Oct; 160():180-9. PubMed ID: 24799225 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]