BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 30744975)

  • 1. Microtubule End-Clustering Maintains a Steady-State Spindle Shape.
    Hueschen CL; Galstyan V; Amouzgar M; Phillips R; Dumont S
    Curr Biol; 2019 Feb; 29(4):700-708.e5. PubMed ID: 30744975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opposing motors provide mechanical and functional robustness in the human spindle.
    Neahring L; Cho NH; Dumont S
    Dev Cell; 2021 Nov; 56(21):3006-3018.e5. PubMed ID: 34614397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NuMA recruits dynein activity to microtubule minus-ends at mitosis.
    Hueschen CL; Kenny SJ; Xu K; Dumont S
    Elife; 2017 Nov; 6():. PubMed ID: 29185983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opposing motor activities are required for the organization of the mammalian mitotic spindle pole.
    Gaglio T; Saredi A; Bingham JB; Hasbani MJ; Gill SR; Schroer TA; Compton DA
    J Cell Biol; 1996 Oct; 135(2):399-414. PubMed ID: 8896597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic reorganization of Eg5 in the mammalian spindle throughout mitosis requires dynein and TPX2.
    Gable A; Qiu M; Titus J; Balchand S; Ferenz NP; Ma N; Collins ES; Fagerstrom C; Ross JL; Yang G; Wadsworth P
    Mol Biol Cell; 2012 Apr; 23(7):1254-66. PubMed ID: 22337772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of NuMA protein with the kinesin Eg5: its possible role in bipolar spindle assembly and chromosome alignment.
    Iwakiri Y; Kamakura S; Hayase J; Sumimoto H
    Biochem J; 2013 Apr; 451(2):195-204. PubMed ID: 23368718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spindle fusion requires dynein-mediated sliding of oppositely oriented microtubules.
    Gatlin JC; Matov A; Groen AC; Needleman DJ; Maresca TJ; Danuser G; Mitchison TJ; Salmon ED
    Curr Biol; 2009 Feb; 19(4):287-96. PubMed ID: 19230671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poleward transport of Eg5 by dynein-dynactin in Xenopus laevis egg extract spindles.
    Uteng M; Hentrich C; Miura K; Bieling P; Surrey T
    J Cell Biol; 2008 Aug; 182(4):715-26. PubMed ID: 18710923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poleward transport of TPX2 in the mammalian mitotic spindle requires dynein, Eg5, and microtubule flux.
    Ma N; Tulu US; Ferenz NP; Fagerstrom C; Wilde A; Wadsworth P
    Mol Biol Cell; 2010 Mar; 21(6):979-88. PubMed ID: 20110350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NuMA assemblies organize microtubule asters to establish spindle bipolarity in acentrosomal human cells.
    Chinen T; Yamamoto S; Takeda Y; Watanabe K; Kuroki K; Hashimoto K; Takao D; Kitagawa D
    EMBO J; 2020 Jan; 39(2):e102378. PubMed ID: 31782546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased lateral microtubule contact at the cell cortex is sufficient to drive mammalian spindle elongation.
    Guild J; Ginzberg MB; Hueschen CL; Mitchison TJ; Dumont S
    Mol Biol Cell; 2017 Jul; 28(14):1975-1983. PubMed ID: 28468979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of NuMA in vertebrate cells: review of an intriguing multifunctional protein.
    Sun QY; Schatten H
    Front Biosci; 2006 Jan; 11():1137-46. PubMed ID: 16146802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamics of microtubule minus ends in the human mitotic spindle.
    Lecland N; Lüders J
    Nat Cell Biol; 2014 Aug; 16(8):770-8. PubMed ID: 24976384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lamin B counteracts the kinesin Eg5 to restrain spindle pole separation during spindle assembly.
    Goodman B; Channels W; Qiu M; Iglesias P; Yang G; Zheng Y
    J Biol Chem; 2010 Nov; 285(45):35238-44. PubMed ID: 20826821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants.
    Yeh E; Yang C; Chin E; Maddox P; Salmon ED; Lew DJ; Bloom K
    Mol Biol Cell; 2000 Nov; 11(11):3949-61. PubMed ID: 11071919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live-cell analysis of mitotic spindle formation in taxol-treated cells.
    Hornick JE; Bader JR; Tribble EK; Trimble K; Breunig JS; Halpin ES; Vaughan KT; Hinchcliffe EH
    Cell Motil Cytoskeleton; 2008 Aug; 65(8):595-613. PubMed ID: 18481305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Kif15 localization and motility by the C-terminus of TPX2 and microtubule dynamics.
    Mann BJ; Balchand SK; Wadsworth P
    Mol Biol Cell; 2017 Jan; 28(1):65-75. PubMed ID: 27852894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative Accumulation of Dynein-Dynactin at Microtubule Minus-Ends Drives Microtubule Network Reorganization.
    Tan R; Foster PJ; Needleman DJ; McKenney RJ
    Dev Cell; 2018 Jan; 44(2):233-247.e4. PubMed ID: 29401420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynein/dynactin regulate metaphase spindle length by targeting depolymerizing activities to spindle poles.
    Gaetz J; Kapoor TM
    J Cell Biol; 2004 Aug; 166(4):465-71. PubMed ID: 15314063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein 4.1R, a microtubule-associated protein involved in microtubule aster assembly in mammalian mitotic extract.
    Huang SC; Jagadeeswaran R; Liu ES; Benz EJ
    J Biol Chem; 2004 Aug; 279(33):34595-602. PubMed ID: 15184364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.