These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30745026)

  • 1. Enhancing ultrasonic time-of-flight diffraction measurement through an adaptive deconvolution method.
    Chen J; Wu E; Wu H; Zhou H; Yang K
    Ultrasonics; 2019 Jul; 96():175-180. PubMed ID: 30745026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal quality enhancement using higher order wavelets for ultrasonic TOFD signals from austenitic stainless steel welds.
    Praveen A; Vijayarekha K; Abraham ST; Venkatraman B
    Ultrasonics; 2013 Sep; 53(7):1288-92. PubMed ID: 23623414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quality Enhancement of Ultrasonic TOFD Signals from Carbon Steel Weld Pad with Notches.
    Manjula K; Vijayarekha K; Venkatraman B
    Ultrasonics; 2018 Mar; 84():264-271. PubMed ID: 29175566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Time-of-Flight Diffraction (TOFD) Inspection through an Innovative Curved-Sole Probe Design.
    Sanchez Duo I; Lanzagorta JL; Aizpurua Maestre I; Galdos L
    Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of Time Resolution in Ultrasonic Time-of-Flight Diffraction Technique With Frequency-Domain Sparsity-Decomposability Inversion (FDSDI) Method.
    Sun X; Lin L; Ma Z; Jin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3204-3215. PubMed ID: 34106853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Study on Determining Time-Of-Flight Difference of Overlapping Ultrasonic Signal: Wave-Transform Network.
    Li Z; Wu T; Zhang W; Gao X; Yao Z; Li Y; Shi Y
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32916969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse deconvolution method for ultrasound images based on automatic estimation of reference signals.
    Jin H; Yang K; Wu S; Wu H; Chen J
    Ultrasonics; 2016 Apr; 67():1-8. PubMed ID: 26773787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards an Alternative to Time of Flight Diffraction Using Instantaneous Phase Coherence Imaging for Characterization of Crack-Like Defects.
    Gauthier B; Painchaud-April G; Le Duff A; Bélanger P
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative simulation of ultrasonic time of flight diffraction technique in 2D geometries using Huygens-Fresnel diffraction model: theory and experimental comparison.
    Kolkoori S; Chitti Venkata K; Balasubramaniam K
    Ultrasonics; 2015 Jan; 55():33-41. PubMed ID: 25200698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of coded excitation methods for measuring the time of flight: Application to ultrasonic characterization of wood samples.
    Lasaygues P; Arciniegas A; Espinosa L; Prieto F; Brancheriau L
    Ultrasonics; 2018 Sep; 89():178-186. PubMed ID: 29857178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust deconvolution of high-frequency ultrasound images using higher-order spectral analysis and wavelets.
    Wan S; Raju BI; Srinivasan MA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1286-95. PubMed ID: 14609068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmented analysis of time-of-flight diffraction ultrasound for flaw detection in welded steel plates using extreme learning machines.
    Silva LC; Simas Filho EF; Albuquerque MCS; Silva IC; Farias CTT
    Ultrasonics; 2020 Mar; 102():106057. PubMed ID: 31952796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A blind deconvolution method for attenuative materials based on asymmetrical Gaussian model.
    Jin H; Chen J; Yang K
    J Acoust Soc Am; 2016 Aug; 140(2):1184. PubMed ID: 27586747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deconvolution method for recovering the photon time-of-flight distribution from time-resolved measurements.
    Diop M; St Lawrence K
    Opt Lett; 2012 Jun; 37(12):2358-60. PubMed ID: 22739907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Optimal Resonant Frequency Band Feature Extraction Method Based on Empirical Wavelet Transform.
    Feng Z; Ma J; Wang X; Wu J; Zhou C
    Entropy (Basel); 2019 Feb; 21(2):. PubMed ID: 33266851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The practical significance of two-dimensional deconvolution in echography.
    Jeurens TJ; Somer JC; Smeets FA; Hoeks AP
    Ultrason Imaging; 1987 Apr; 9(2):106-16. PubMed ID: 3318076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic Rough Crack Characterization Using Time-of-Flight Diffraction With Self-Attention Neural Network.
    Wang Z; Shi F; Ding J; Song X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Oct; 71(10):1289-1301. PubMed ID: 39264783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Maximum Entropy Method in Ultrasonic Non-Destructive Testing-Increasing the Resolution, Image Noise Reduction and Echo Acquisition Rate.
    Bazulin EG
    Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive tuning piecewise cubic Hermite interpolation with Wiener filter in wavelet domain for scanning electron microscope images.
    Yeap ZX; Sim KS; Tso CP
    Microsc Res Tech; 2019 Apr; 82(4):402-414. PubMed ID: 30575192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband and high sensitive time-of-flight diffraction ultrasonic transducers based on PMNT/epoxy 1-3 piezoelectric composite.
    Liu D; Yue Q; Deng J; Lin D; Li X; Di W; Wang X; Zhao X; Luo H
    Sensors (Basel); 2015 Mar; 15(3):6807-17. PubMed ID: 25808776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.