These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30745087)

  • 21. Host control by SPβ phage regulatory switch as potential manipulation strategy.
    Floccari VA; Dragoš A
    Curr Opin Microbiol; 2023 Feb; 71():102260. PubMed ID: 36580707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages.
    Brady A; Felipe-Ruiz A; Gallego Del Sol F; Marina A; Quiles-Puchalt N; Penadés JR
    Annu Rev Microbiol; 2021 Oct; 75():563-581. PubMed ID: 34343015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The life cycle of SPβ and related phages.
    Kohm K; Hertel R
    Arch Virol; 2021 Aug; 166(8):2119-2130. PubMed ID: 34100162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overproduction, isolation, and DNA-binding characteristics of Xre, the repressor protein from the Bacillus subtilis defective prophage PBSX.
    McDonnell GE; McConnell DJ
    J Bacteriol; 1994 Sep; 176(18):5831-4. PubMed ID: 8083175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Insights into Bacteriophage GIL01 gp7 Inhibition of Host LexA Repressor.
    Caveney NA; Pavlin A; Caballero G; Bahun M; Hodnik V; de Castro L; Fornelos N; Butala M; Strynadka NCJ
    Structure; 2019 Jul; 27(7):1094-1102.e4. PubMed ID: 31056420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lytic gene expression in the temperate bacteriophage GIL01 is activated by a phage-encoded LexA homologue.
    Fornelos N; Browning DF; Pavlin A; Podlesek Z; Hodnik V; Salas M; Butala M
    Nucleic Acids Res; 2018 Oct; 46(18):9432-9443. PubMed ID: 30053203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA bending and looping in the transcriptional control of bacteriophage phi29.
    Camacho A; Salas M
    FEMS Microbiol Rev; 2010 Sep; 34(5):828-41. PubMed ID: 20412311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repeated outbreaks drive the evolution of bacteriophage communication.
    Doekes HM; Mulder GA; Hermsen R
    Elife; 2021 Jan; 10():. PubMed ID: 33459590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of prophage induction and lysogenization by phage communication systems.
    Bruce JB; Lion S; Buckling A; Westra ER; Gandon S
    Curr Biol; 2021 Nov; 31(22):5046-5051.e7. PubMed ID: 34562385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of actin-like proteins encoded by two Bacillus pumilus phages on unstable lysogeny, revealed by genomic analysis.
    Yuan Y; Peng Q; Wu D; Kou Z; Wu Y; Liu P; Gao M
    Appl Environ Microbiol; 2015 Jan; 81(1):339-50. PubMed ID: 25344242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phage-borne factors and host LexA regulate the lytic switch in phage GIL01.
    Fornelos N; Bamford JK; Mahillon J
    J Bacteriol; 2011 Nov; 193(21):6008-19. PubMed ID: 21890699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-stranded DNA binding protein Gp5 of Bacillus subtilis phage Φ29 is required for viral DNA replication in growth-temperature dependent fashion.
    Tone T; Takeuchi A; Makino O
    Biosci Biotechnol Biochem; 2012; 76(12):2351-3. PubMed ID: 23221709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lactococcus lactis lytic bacteriophages of the P335 group are inhibited by overexpression of a truncated CI repressor.
    Durmaz E; Madsen SM; Israelsen H; Klaenhammer TR
    J Bacteriol; 2002 Dec; 184(23):6532-44. PubMed ID: 12426341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Cloning and analysis of prophage PBSX repressor gene from Bacillus subtilis].
    Li N; Chen Y; Feng J
    Yi Chuan Xue Bao; 1995; 22(6):478-86. PubMed ID: 8900842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of Bacillus subtilis SPP1 phage gp22 shares fold similarity with a domain of lactococcal phage p2 RBP.
    Veesler D; Blangy S; Spinelli S; Tavares P; Campanacci V; Cambillau C
    Protein Sci; 2010 Jul; 19(7):1439-43. PubMed ID: 20506290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of Bacillus subtilis uracil-DNA glycosylase and its inhibition by phage φ29 protein p56.
    Pérez-Lago L; Serrano-Heras G; Baños B; Lázaro JM; Alcorlo M; Villar L; Salas M
    Mol Microbiol; 2011 Jun; 80(6):1657-66. PubMed ID: 21542855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New insights in the ϕ29 terminal protein DNA-binding and host nucleoid localization functions.
    Holguera I; Redrejo-Rodríguez M; Salas M; Muñoz-Espín D
    Mol Microbiol; 2014 Jan; 91(2):232-41. PubMed ID: 24205926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding the mechanism of asymmetric gene regulation determined by the VqmA of vibriophage.
    Gu Y; Zhi SX; Yang N; Yang WS
    Biochem Biophys Res Commun; 2021 Jun; 558():51-56. PubMed ID: 33895551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein p4 represses phage phi 29 A2c promoter by interacting with the alpha subunit of Bacillus subtilis RNA polymerase.
    Monsalve M; Mencía M; Salas M; Rojo F
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8913-8. PubMed ID: 8799127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quorum Sensing and Metabolic State of the Host Control Lysogeny-Lysis Switch of Bacteriophage T1.
    Laganenka L; Sander T; Lagonenko A; Chen Y; Link H; Sourjik V
    mBio; 2019 Sep; 10(5):. PubMed ID: 31506310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.