These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30745282)

  • 61. Many Birds, One Stone: A Smart Nanodevice for Ratiometric Dual-Spectrum Assay of Intracellular MicroRNA and Multimodal Synergetic Cancer Therapy.
    He P; Han W; Bi C; Song W; Niu S; Zhou H; Zhang X
    ACS Nano; 2021 Apr; 15(4):6961-6976. PubMed ID: 33820415
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Controlled Self-Assembly of a Close-Packed Gold Octahedra Array for SERS Sensing Exosomal MicroRNAs.
    Kang T; Zhu J; Luo X; Jia W; Wu P; Cai C
    Anal Chem; 2021 Feb; 93(4):2519-2526. PubMed ID: 33404216
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Personalized detection of circling exosomal PD-L1 based on Fe
    Pang Y; Shi J; Yang X; Wang C; Sun Z; Xiao R
    Biosens Bioelectron; 2020 Jan; 148():111800. PubMed ID: 31678824
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A SERS approach for rapid detection of microRNA-17 in the picomolar range.
    Schechinger M; Marks H; Mabbott S; Choudhury M; Cote' G
    Analyst; 2019 Jul; 144(13):4033-4044. PubMed ID: 31143920
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A target-triggered dual amplification strategy for sensitive detection of microRNA.
    Lv W; Zhao J; Situ B; Li B; Ma W; Liu J; Wu Z; Wang W; Yan X; Zheng L
    Biosens Bioelectron; 2016 Sep; 83():250-5. PubMed ID: 27131998
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Screening and multiple detection of cancer exosomes using an SERS-based method.
    Wang Z; Zong S; Wang Y; Li N; Li L; Lu J; Wang Z; Chen B; Cui Y
    Nanoscale; 2018 May; 10(19):9053-9062. PubMed ID: 29718044
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Exosomes Derived From Pancreatic Stellate Cells: MicroRNA Signature and Effects on Pancreatic Cancer Cells.
    Takikawa T; Masamune A; Yoshida N; Hamada S; Kogure T; Shimosegawa T
    Pancreas; 2017 Jan; 46(1):19-27. PubMed ID: 27841793
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Simultaneous Detection of Dual Nucleic Acids Using a SERS-Based Lateral Flow Assay Biosensor.
    Wang X; Choi N; Cheng Z; Ko J; Chen L; Choo J
    Anal Chem; 2017 Jan; 89(2):1163-1169. PubMed ID: 28194991
    [TBL] [Abstract][Full Text] [Related]  

  • 69. MicroRNA Detection with Turnover Amplification via Hybridization-Mediated Staudinger Reduction for Pancreatic Cancer Diagnosis.
    Xian L; Xu F; Liu J; Xu N; Li H; Ge H; Shao K; Fan J; Xiao G; Peng X
    J Am Chem Soc; 2019 Dec; 141(51):20490-20497. PubMed ID: 31774664
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A DNA-linker-DNA bifunctional probe for simultaneous SERS detection of miRNAs via symmetric signal amplification.
    Ye S; Wang M; Wang Z; Zhang N; Luo X
    Chem Commun (Camb); 2018 Jul; 54(56):7786-7789. PubMed ID: 29943776
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Clinical significance of exosomal miR-1231 in pancreatic cancer].
    Chen SL; Ma M; Yan L; Xiong SH; Liu Z; Li S; Liu T; Shang S; Zhang YY; Zeng H; Xie HL; Zuo CH
    Zhonghua Zhong Liu Za Zhi; 2019 Jan; 41(1):46-49. PubMed ID: 30678416
    [No Abstract]   [Full Text] [Related]  

  • 72. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity.
    Madhavan B; Yue S; Galli U; Rana S; Gross W; Müller M; Giese NA; Kalthoff H; Becker T; Büchler MW; Zöller M
    Int J Cancer; 2015 Jun; 136(11):2616-27. PubMed ID: 25388097
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tumor-Secreted Exosomal miR-222 Promotes Tumor Progression via Regulating P27 Expression and Re-Localization in Pancreatic Cancer.
    Li Z; Tao Y; Wang X; Jiang P; Li J; Peng M; Zhang X; Chen K; Liu H; Zhen P; Zhu J; Liu X; Liu X
    Cell Physiol Biochem; 2018; 51(2):610-629. PubMed ID: 30458449
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ultrasensitive Electrochemiluminescence Biosensor for MicroRNA Detection by 3D DNA Walking Machine Based Target Conversion and Distance-Controllable Signal Quenching and Enhancing.
    Xu Z; Liao L; Chai Y; Wang H; Yuan R
    Anal Chem; 2017 Aug; 89(16):8282-8287. PubMed ID: 28703569
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ultrasensitive detection of aflatoxin B
    Li Q; Lu Z; Tan X; Xiao X; Wang P; Wu L; Shao K; Yin W; Han H
    Biosens Bioelectron; 2017 Nov; 97():59-64. PubMed ID: 28554047
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Surface Acoustic Wave Lysis and Ion-Exchange Membrane Quantification of Exosomal MicroRNA.
    Richards KE; Go DB; Hill R
    Methods Mol Biol; 2017; 1580():59-70. PubMed ID: 28439826
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Colorimetric detection of microRNA based on DNAzyme and nuclease-assisted catalytic hairpin assembly signal amplification.
    Zhang H; Wang K; Bu S; Li Z; Ju C; Wan J
    Mol Cell Probes; 2018 Apr; 38():13-18. PubMed ID: 29458177
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Novel 2D-DNA-Nanoprobe-Mediated Enzyme-Free-Target-Recycling Amplification for the Ultrasensitive Electrochemical Detection of MicroRNA.
    Zhang X; Yang Z; Chang Y; Qing M; Yuan R; Chai Y
    Anal Chem; 2018 Aug; 90(15):9538-9544. PubMed ID: 29984573
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sample preparation-free, real-time detection of microRNA in human serum using piezoelectric cantilever biosensors at attomole level.
    Johnson BN; Mutharasan R
    Anal Chem; 2012 Dec; 84(23):10426-36. PubMed ID: 23101954
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Quantitative Detection of MicroRNA in One Step via Next Generation Magnetic Relaxation Switch Sensing.
    Lu W; Chen Y; Liu Z; Tang W; Feng Q; Sun J; Jiang X
    ACS Nano; 2016 Jul; 10(7):6685-92. PubMed ID: 27348259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.