BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 30745377)

  • 1. A Xylose-Inducible Expression System and a CRISPR Interference Plasmid for Targeted Knockdown of Gene Expression in Clostridioides difficile.
    Müh U; Pannullo AG; Weiss DS; Ellermeier CD
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30745377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR Interference for Rapid Knockdown of Essential Cell Cycle Genes in
    Myrbråten IS; Wiull K; Salehian Z; Håvarstein LS; Straume D; Mathiesen G; Kjos M
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30894429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the
    Shen A
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30833354
    [No Abstract]   [Full Text] [Related]  

  • 5. The WalRK Two-Component System Is Essential for Proper Cell Envelope Biogenesis in Clostridioides difficile.
    Müh U; Ellermeier CD; Weiss DS
    J Bacteriol; 2022 Jun; 204(6):e0012122. PubMed ID: 35575581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable Gene Knockdown in Diverse Bacteria Using Mobile-CRISPRi.
    Banta AB; Ward RD; Tran JS; Bacon EE; Peters JM
    Curr Protoc Microbiol; 2020 Dec; 59(1):e130. PubMed ID: 33332762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducible CRISPRi-Based Operon Silencing and Selective in
    Murphy BT; Wiepen JJ; He H; Pramanik AS; Peters JM; Stevenson B; Zückert WR
    J Bacteriol; 2023 Feb; 205(2):e0046822. PubMed ID: 36719218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of a Conditional Knockout System for
    Ouellette SP
    Front Cell Infect Microbiol; 2018; 8():59. PubMed ID: 29535977
    [No Abstract]   [Full Text] [Related]  

  • 9. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain.
    Park J; Shin H; Lee SM; Um Y; Woo HM
    Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of a xylose-inducible gene expression system for Clostridium perfringens.
    Nariya H; Miyata S; Kuwahara T; Okabe A
    Appl Environ Microbiol; 2011 Dec; 77(23):8439-41. PubMed ID: 21965407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysozyme Resistance in Clostridioides difficile Is Dependent on Two Peptidoglycan Deacetylases.
    Kaus GM; Snyder LF; Müh U; Flores MJ; Popham DL; Ellermeier CD
    J Bacteriol; 2020 Oct; 202(22):. PubMed ID: 32868404
    [No Abstract]   [Full Text] [Related]  

  • 12. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional Knockdown in Pneumococci Using CRISPR Interference.
    Kjos M
    Methods Mol Biol; 2019; 1968():89-98. PubMed ID: 30929208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robust CRISPR Interference Gene Repression System in Pseudomonas.
    Tan SZ; Reisch CR; Prather KLJ
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311279
    [No Abstract]   [Full Text] [Related]  

  • 15. A Broad-Host-Range CRISPRi Toolkit for Silencing Gene Expression in
    Hogan AM; Rahman ASMZ; Lightly TJ; Cardona ST
    ACS Synth Biol; 2019 Oct; 8(10):2372-2384. PubMed ID: 31491085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR interference (CRISPRi) for sequence-specific control of gene expression.
    Larson MH; Gilbert LA; Wang X; Lim WA; Weissman JS; Qi LS
    Nat Protoc; 2013 Nov; 8(11):2180-96. PubMed ID: 24136345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An
    Hornung BVH; Kuijper EJ; Smits WK
    Microb Genom; 2019 Sep; 5(9):. PubMed ID: 31526450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CRISPR Interference System for Efficient and Rapid Gene Knockdown in Caulobacter crescentus.
    Guzzo M; Castro LK; Reisch CR; Guo MS; Laub MT
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression.
    Donnelly ML; Shrestha S; Ribis JW; Kuhn P; Krasilnikov M; Alves Feliciano C; Shen A
    mSphere; 2022 Jun; 7(3):e0013222. PubMed ID: 35638354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Efficient Genome Editing in Clostridium difficile Using the CRISPR-Cpf1 System.
    Hong W; Zhang J; Cui G; Zhou Q; Wang P; Wang Y
    Methods Mol Biol; 2022; 2479():175-187. PubMed ID: 35583739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.