These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30746116)

  • 1. Tunable plasmonic core-shell heterostructure design for broadband light driven catalysis.
    Han C; Li SH; Tang ZR; Xu YJ
    Chem Sci; 2018 Dec; 9(48):8914-8922. PubMed ID: 30746116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-induced hot electron transfer in AgNW@TiO
    Cheng J; Li Y; Plissonneau M; Li J; Li J; Chen R; Tang Z; Pautrot-d'Alençon L; He T; Tréguer-Delapierre M; Delville MH
    Sci Rep; 2018 Sep; 8(1):14136. PubMed ID: 30237426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar-driven plasmonic heterostructure Ti/TiO
    Cheng C; Akram MN; Nilsen O; Pryds N; Wang K
    Phys Chem Chem Phys; 2020 Apr; 22(15):7769-7777. PubMed ID: 32236207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot-electron transfer from the semiconductor domain to the metal domain in CdSe@CdS{Au} nano-heterostructures.
    Dana J; Maity P; Ghosh HN
    Nanoscale; 2017 Jul; 9(27):9723-9731. PubMed ID: 28675235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells.
    Yao K; Zhong H; Liu Z; Xiong M; Leng S; Zhang J; Xu YX; Wang W; Zhou L; Huang H; Jen AK
    ACS Nano; 2019 May; 13(5):5397-5409. PubMed ID: 31017763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Au@TiO
    Chen TM; Xu GY; Ren H; Zhang H; Tian ZQ; Li JF
    Nanoscale Adv; 2019 Nov; 1(11):4522-4528. PubMed ID: 36134424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.
    Zhou L; Yu X; Zhu J
    Nano Lett; 2014 Feb; 14(2):1093-8. PubMed ID: 24443983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant Enhancement of Radiative Recombination in Perovskite Light-Emitting Diodes with Plasmonic Core-Shell Nanoparticles.
    Masharin MA; Berestennikov AS; Barettin D; Voroshilov PM; Ladutenko KS; Di Carlo A; Makarov SV
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion.
    Han C; Quan Q; Chen HM; Sun Y; Xu YJ
    Small; 2017 Apr; 13(14):. PubMed ID: 28151576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency.
    Zhou N; Polavarapu L; Wang Q; Xu QH
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4844-50. PubMed ID: 25674821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-free plasmonic refractory core-shell nanowires for tunable all-dielectric broadband perfect absorbers.
    Zhang H; Liu Z; Zhong H; Liu G; Liu X; Wang J
    Opt Express; 2020 Nov; 28(24):37049-37057. PubMed ID: 33379786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells.
    Yu P; Yao Y; Wu J; Niu X; Rogach AL; Wang Z
    Sci Rep; 2017 Aug; 7(1):7696. PubMed ID: 28794487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering.
    Zhu L; Meng Z; Hu S; Zhao T; Zhao B
    ACS Appl Mater Interfaces; 2023 May; 15(18):22730-22736. PubMed ID: 37125659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-driven water splitting enhancement on plasmonic metal-insulator-semiconductor hetero-nanostructures: unraveling the crucial role of interfacial engineering.
    Li C; Wang P; Li H; Wang M; Zhang J; Qi G; Jin Y
    Nanoscale; 2018 Aug; 10(29):14290-14297. PubMed ID: 30015344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable synthesis of concave cubic gold core-shell nanoparticles for plasmon-enhanced photon harvesting.
    Bai Y; Butburee T; Yu H; Li Z; Amal R; Lu GQ; Wang L
    J Colloid Interface Sci; 2015 Jul; 449():246-51. PubMed ID: 25498878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the Metal/Dielectric Interface to Unlock the Potential of Scattered Light for Boosted Photoredox Catalysis.
    Yu C; Huang Z; Wang J; Xie G; Jiang S; Xie X; Ma T; Zhang N
    ACS Nano; 2023 Aug; 17(16):15666-15677. PubMed ID: 37523449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Plasmonic Core-Shell Nanostructures in Surface Enhanced Raman Scattering and Photocatalysis.
    Cao E; Cao Y; Sun M
    Anal Chem; 2024 Jul; 96(29):11623-11638. PubMed ID: 38490972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.