These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30746116)

  • 21. Enhanced OER Performances of Au@NiCo
    Lv Y; Duan S; Zhu Y; Yin P; Wang AR
    Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32230724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmonic Metal Mediated Charge Transfer in Stacked Core-Shell Semiconductor Heterojunction for Significantly Enhanced CO
    Wang S; Zhang Y; Zheng Y; Xu Y; Yang G; Zhong S; Zhao Y; Bai S
    Small; 2023 Jan; 19(2):e2204774. PubMed ID: 36394158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal-Semiconductor Nanojunctions.
    Sistani M; Bartmann MG; Güsken NA; Oulton RF; Keshmiri H; Luong MA; Momtaz ZS; Den Hertog MI; Lugstein A
    ACS Photonics; 2020 Jul; 7(7):1642-1648. PubMed ID: 32685608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunable thickness of mesoporous ZnO-coated metal nanoparticles for enhanced visible-light driven photoelectrochemical water splitting.
    Zhou N; Yan R; Wang X; Fu J; Zhang J; Li Y; Sun X
    Chemosphere; 2021 Jun; 273():129679. PubMed ID: 33515964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and characterization of noble metal-titania core-shell nanostructures with tunable shell thickness.
    Bartosewicz B; Michalska-Domańska M; Liszewska M; Zasada D; Jankiewicz BJ
    Beilstein J Nanotechnol; 2017; 8():2083-2093. PubMed ID: 29090110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hot Carrier Extraction with Plasmonic Broadband Absorbers.
    Ng C; Cadusch JJ; Dligatch S; Roberts A; Davis TJ; Mulvaney P; Gómez DE
    ACS Nano; 2016 Apr; 10(4):4704-11. PubMed ID: 26982625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-wavelength pumped upconversion enhancement induced by Cu
    Zhou D; Tao L; Cui S; Jiao J; Hu J; Xu W
    Opt Lett; 2021 Jan; 46(1):5-8. PubMed ID: 33362008
    [No Abstract]   [Full Text] [Related]  

  • 29. Unraveling Surface Plasmon Decay in Core-Shell Nanostructures toward Broadband Light-Driven Catalytic Organic Synthesis.
    Huang H; Zhang L; Lv Z; Long R; Zhang C; Lin Y; Wei K; Wang C; Chen L; Li ZY; Zhang Q; Luo Y; Xiong Y
    J Am Chem Soc; 2016 Jun; 138(21):6822-8. PubMed ID: 27175744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting.
    Vahidzadeh E; Zeng S; Alam KM; Kumar P; Riddell S; Chaulagain N; Gusarov S; Kobryn AE; Shankar K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42741-42752. PubMed ID: 34476945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A nanofabricated plasmonic core-shell-nanoparticle library.
    Susarrey-Arce A; Czajkowski KM; Darmadi I; Nilsson S; Tanyeli I; Alekseeva S; Antosiewicz TJ; Langhammer C
    Nanoscale; 2019 Nov; 11(44):21207-21217. PubMed ID: 31663581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Batch preparation of gold nanoparticles with highly uniform morphology and tunable plasmonic properties.
    Liu T; Wang J; Xie Z; Wan L; Xiang J; Zhang Y; Luo S; Bin R; Liu G
    Nanotechnology; 2020 Oct; 31(40):405603. PubMed ID: 32526722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical Study on the Surface Plasmon Resonance Tunability of Spherical and Non-Spherical Core-Shell Dimer Nanostructures.
    Fernandes J; Kang S
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Promoting reactivity of photoexcited hot electrons in small-sized plasmonic metal nanoparticles that are supported on dielectric nanospheres.
    Rasamani KD; Sun Y
    J Chem Phys; 2020 Feb; 152(8):084706. PubMed ID: 32113372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoimprinted Hybrid Metal-Semiconductor Plasmonic Multilayers with Controlled Surface Nano Architecture for Applications in NIR Detectors.
    Khosroabadi AA; Gangopadhyay P; Hernandez S; Kim K; Peyghambarian N; Norwood RA
    Materials (Basel); 2015 Aug; 8(8):5028-5047. PubMed ID: 28793489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor.
    Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N
    J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface Depletion Layers in Plasmonic Metal Oxide Nanocrystals.
    Gibbs SL; Staller CM; Milliron DJ
    Acc Chem Res; 2019 Sep; 52(9):2516-2524. PubMed ID: 31424914
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An optimal architecture of magneto-plasmonic core-shell nanoparticles for potential photothermal applications.
    Hadilou N; Souri S; Navid HA; Sadighi Bonabi R; Anvari A; Palpant B
    Phys Chem Chem Phys; 2020 Jul; 22(25):14318-14328. PubMed ID: 32567612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonically-powered hot carrier induced modulation of light emission in a two-dimensional GaAs semiconductor quantum well.
    Ashalley E; Gryczynski K; Wang Z; Salamo G; Neogi A
    Nanoscale; 2019 Mar; 11(9):3827-3836. PubMed ID: 30633286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.