These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3074640)

  • 1. Technological development of lipid based tubule microstructures.
    Rudolph AS; Calvert JM; Schoen PE; Schnur JM
    Adv Exp Med Biol; 1988; 238():305-20. PubMed ID: 3074640
    [No Abstract]   [Full Text] [Related]  

  • 2. Differential scanning calorimetric study of the thermotropic phase behavior of a polymerizable, tubule-forming lipid.
    Burke TG; Rudolph AS; Price RR; Sheridan JP; Dalziel AW; Singh A; Schoen PE
    Chem Phys Lipids; 1988 Oct; 48(3-4):215-30. PubMed ID: 3242950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permeability and morphology of low temperature phases in bilayers of single and of mixtures of phosphatidylcholines.
    Singer MA; Finegold L
    Biochim Biophys Acta; 1985 Jun; 816(2):303-12. PubMed ID: 4005246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipid tubelets.
    Mishra BK; Garrett CC; Thomas BN
    J Am Chem Soc; 2005 Mar; 127(12):4254-9. PubMed ID: 15783207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure and thermotropic phase behaviour of dipalmitoylphosphatidylcholine codispersed with a branched-chain phosphatidylcholine.
    Semmler K; Meyer HW; Quinn PJ
    Biochim Biophys Acta; 2000 Dec; 1509(1-2):385-96. PubMed ID: 11118548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physical state of quick-frozen membranes and lipids.
    Melchior DL; Bruggemann EP; Steim JM
    Biochim Biophys Acta; 1982 Aug; 690(1):81-8. PubMed ID: 7126570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase characteristics of positional isomers of 1,2-di(heptacosadiynoyl)-sn-glycero-3-phosphocholine; tubule-forming phosphatidylcholines.
    Rudolph AS; Singh BP; Singh A; Burke TG
    Biochim Biophys Acta; 1988 Sep; 943(3):454-62. PubMed ID: 3415987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorimetric studies of lipid tubule formation from ethanol-water solutions.
    Rudolph AS; Testoff MA; Shashidar R
    Biochim Biophys Acta; 1992 Jul; 1127(2):186-90. PubMed ID: 1643105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of membrane proteins into liposomal bilayers.
    Wrigglesworth JM
    Mol Aspects Med; 1988; 10(3):223-32. PubMed ID: 2852744
    [No Abstract]   [Full Text] [Related]  

  • 10. Domain formation in phosphatidylcholine bilayers containing transmembrane peptides: specific effects of flanking residues.
    Rinia HA; Boots JW; Rijkers DT; Kik RA; Snel MM; Demel RA; Killian JA; van der Eerden JP; de Kruijff B
    Biochemistry; 2002 Feb; 41(8):2814-24. PubMed ID: 11851429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+-induced changes in the barrier properties of cardiolipin/phosphatidylcholine bilayers.
    Mandersloot JG; Gerritsen WJ; Leunissen-Bijvelt J; van Echteld CJ; Noordam PC; de Gier J
    Biochim Biophys Acta; 1981 Jan; 640(1):106-13. PubMed ID: 7213681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective decoration of hydrophilic moieties of membrane molecules in freeze fracture.
    Stewart TP; Hui SW
    Biochim Biophys Acta; 1979 Dec; 558(3):353-7. PubMed ID: 508754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid domains in fluid membranes: a quick-freeze differential scanning calorimetry study.
    Melchior DL
    Science; 1986 Dec; 234(4783):1577-80. PubMed ID: 3787264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lamellar--micellar transition of 1-stearoyllysophosphatidylcholine assemblies in excess water.
    Wu W; Huang C; Conley TG; Martin RB; Levin IW
    Biochemistry; 1982 Nov; 21(23):5957-61. PubMed ID: 7150539
    [No Abstract]   [Full Text] [Related]  

  • 15. The distribution of cholesterol in bilayers of phosphatidylcholines as visualized by freeze fracturing.
    Verkleij AJ; Ververgaert PH; de Kruyff B; Van Deenen LM
    Biochim Biophys Acta; 1974 Dec; 373(3):495-501. PubMed ID: 4433591
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of glycophorin incorporation on the physico-chemical properties of phospholipid bilayers.
    van Zoelen EJ; van Dijck PW; de Kruijff B; Verkleij AJ; van Deenen LL
    Biochim Biophys Acta; 1978 Dec; 514(1):9-24. PubMed ID: 718907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melittin-induced changes of the macroscopic structure of phosphatidylethanolamines.
    Batenburg AM; van Esch JH; de Kruijff B
    Biochemistry; 1988 Apr; 27(7):2324-31. PubMed ID: 3382625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane fusion through point defects in bilayers.
    Hui SW; Stewart TP; Boni LT; Yeagle PL
    Science; 1981 May; 212(4497):921-3. PubMed ID: 7233185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of glycophorin with lipid bilayer studied by calorimetry, densitometry, static light scattering, and electron microscopy.
    Sui SF; Sackmann E
    J Biochem; 1992 Jan; 111(1):129-38. PubMed ID: 1607359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of protein-free lipoprotein analogues with an apolar lipid core by freeze-etch electron microscopy.
    Wong KF; Parmar YI; Mayer LD; Pritchard PH; Cullis PR
    Biochim Biophys Acta; 1987 Sep; 921(2):411-4. PubMed ID: 3651497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.