These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 30746435)

  • 1. Scaling of bird wings and feathers for efficient flight.
    Sullivan TN; Meyers MA; Arzt E
    Sci Adv; 2019 Jan; 5(1):eaat4269. PubMed ID: 30746435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness.
    Witton MP; Habib MB
    PLoS One; 2010 Nov; 5(11):e13982. PubMed ID: 21085624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).
    Hieronymus TL
    BMC Evol Biol; 2015 Feb; 15():30. PubMed ID: 25880306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biomechanical origin of extreme wing allometry in hummingbirds.
    Skandalis DA; Segre PS; Bahlman JW; Groom DJE; Welch KC; Witt CC; McGuire JA; Dudley R; Lentink D; Altshuler DL
    Nat Commun; 2017 Oct; 8(1):1047. PubMed ID: 29051535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the autorotation of animal wings.
    Ortega-Jimenez VM; Martín-Alcántara A; Fernandez-Feria R; Dudley R
    J R Soc Interface; 2017 Jan; 14(126):. PubMed ID: 28077761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive aeroelastic deflection of avian primary feathers.
    Klaassen van Oorschot B; Choroszucha R; Tobalske BW
    Bioinspir Biomim; 2020 Jul; 15(5):056008. PubMed ID: 32470956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of the characteristics of barbs and barbules on barn owl wing feathers.
    Weger M; Wagner H
    J Anat; 2017 May; 230(5):734-742. PubMed ID: 28255996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion.
    Chang E; Matloff LY; Stowers AK; Lentink D
    Sci Robot; 2020 Jan; 5(38):. PubMed ID: 33022590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone histological correlates of soaring and high-frequency flapping flight in the furculae of birds.
    Mitchell J; Legendre LJ; Lefèvre C; Cubo J
    Zoology (Jena); 2017 Jun; 122():90-99. PubMed ID: 28495051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds.
    Wang X; Nudds RL; Palmer C; Dyke GJ
    J Evol Biol; 2012 Mar; 25(3):547-55. PubMed ID: 22260434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling trends of bird's alular feathers in connection to leading-edge vortex flow over hand-wing.
    Linehan T; Mohseni K
    Sci Rep; 2020 May; 10(1):7905. PubMed ID: 32404925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of body size on take-off flight performance in the Phasianidae (Aves).
    Tobalske BW; Dial KP
    J Exp Biol; 2000 Nov; 203(Pt 21):3319-32. PubMed ID: 11023852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flight performance of the largest volant bird.
    Ksepka DT
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):10624-9. PubMed ID: 25002475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of wing damage and moult gaps on vertebrate flight performance.
    Hedenström A
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 37132410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates.
    Chin DD; Matloff LY; Stowers AK; Tucci ER; Lentink D
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28592663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avian wing proportions and flight styles: first step towards predicting the flight modes of mesozoic birds.
    Wang X; McGowan AJ; Dyke GJ
    PLoS One; 2011; 6(12):e28672. PubMed ID: 22163324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covert-inspired flaps: an experimental study to understand the interactions between upperwing and underwing covert feathers.
    Zekry DA; Nam T; Gupta R; Zhu Y; Wissa AA
    Bioinspir Biomim; 2023 Jun; 18(4):. PubMed ID: 37366564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogeny of lift and drag production in ground birds.
    Heers AM; Tobalske BW; Dial KP
    J Exp Biol; 2011 Mar; 214(Pt 5):717-25. PubMed ID: 21307057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flight aerodynamics in enantiornithines: Information from a new Chinese Early Cretaceous bird.
    Liu D; Chiappe LM; Serrano F; Habib M; Zhang Y; Meng Q
    PLoS One; 2017; 12(10):e0184637. PubMed ID: 29020077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight.
    Lynch M; Mandadzhiev B; Wissa A
    Bioinspir Biomim; 2018 Mar; 13(3):036003. PubMed ID: 29388556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.