These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 30746444)

  • 41. van der Waals Contact Engineering of Graphene Field-Effect Transistors for Large-Area Flexible Electronics.
    Liu F; Navaraj WT; Yogeswaran N; Gregory DH; Dahiya R
    ACS Nano; 2019 Mar; 13(3):3257-3268. PubMed ID: 30835440
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vertical WS
    Wang J; Jia R; Huang Q; Pan C; Zhu J; Wang H; Chen C; Zhang Y; Yang Y; Song H; Miao F; Huang R
    Sci Rep; 2018 Dec; 8(1):17755. PubMed ID: 30531791
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Picosecond photoresponse in van der Waals heterostructures.
    Massicotte M; Schmidt P; Vialla F; Schädler KG; Reserbat-Plantey A; Watanabe K; Taniguchi T; Tielrooij KJ; Koppens FH
    Nat Nanotechnol; 2016 Jan; 11(1):42-6. PubMed ID: 26436565
    [TBL] [Abstract][Full Text] [Related]  

  • 44. TiS
    Liu J; Guo Y; Wang FQ; Wang Q
    Nanoscale; 2018 Jan; 10(2):807-815. PubMed ID: 29260814
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hard magnetic properties in nanoflake van der Waals Fe
    Tan C; Lee J; Jung SG; Park T; Albarakati S; Partridge J; Field MR; McCulloch DG; Wang L; Lee C
    Nat Commun; 2018 Apr; 9(1):1554. PubMed ID: 29674662
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Understanding Electronic Properties and Tunable Schottky Barriers in a Graphene/Boron Selenide van der Waals Heterostructure.
    Nguyen ST; Nguyen CQ; Ang YS; Van Hoang N; Hung NM; Nguyen CV
    Langmuir; 2023 May; 39(18):6637-6645. PubMed ID: 37116116
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics.
    Jariwala D; Davoyan AR; Tagliabue G; Sherrott MC; Wong J; Atwater HA
    Nano Lett; 2016 Sep; 16(9):5482-7. PubMed ID: 27563733
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced Electrical and Optoelectronic Characteristics of Few-Layer Type-II SnSe/MoS
    Yang S; Wu M; Wang B; Zhao LD; Huang L; Jiang C; Wei SH
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42149-42155. PubMed ID: 29134796
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors.
    Kang J; Jariwala D; Ryder CR; Wells SA; Choi Y; Hwang E; Cho JH; Marks TJ; Hersam MC
    Nano Lett; 2016 Apr; 16(4):2580-5. PubMed ID: 26950174
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of intrinsic two-dimensional ferroelectrics in In
    Ding W; Zhu J; Wang Z; Gao Y; Xiao D; Gu Y; Zhang Z; Zhu W
    Nat Commun; 2017 Apr; 8():14956. PubMed ID: 28387225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tunable Schottky and Ohmic contacts in graphene and tellurene van der Waals heterostructures.
    Qin X; Hu W; Yang J
    Phys Chem Chem Phys; 2019 Nov; 21(42):23611-23619. PubMed ID: 31624813
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions.
    Liu Y; Guo J; Zhu E; Liao L; Lee SJ; Ding M; Shakir I; Gambin V; Huang Y; Duan X
    Nature; 2018 May; 557(7707):696-700. PubMed ID: 29769729
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy.
    Zuo Z; Xu Z; Zheng R; Khanaki A; Zheng JG; Liu J
    Sci Rep; 2015 Oct; 5():14760. PubMed ID: 26442629
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Low-Voltage Complementary Electronics from Ion-Gel-Gated Vertical Van der Waals Heterostructures.
    Choi Y; Kang J; Jariwala D; Kang MS; Marks TJ; Hersam MC; Cho JH
    Adv Mater; 2016 May; 28(19):3742-8. PubMed ID: 27002478
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tunable Schottky barrier in InTe/graphene van der Waals heterostructure.
    Li H; Zhou Z; Wang H
    Nanotechnology; 2020 Aug; 31(33):335201. PubMed ID: 32348976
    [TBL] [Abstract][Full Text] [Related]  

  • 56. van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices.
    Wang Q; Xu K; Wang Z; Wang F; Huang Y; Safdar M; Zhan X; Wang F; Cheng Z; He J
    Nano Lett; 2015 Feb; 15(2):1183-9. PubMed ID: 25603278
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Persistent hysteresis in graphene-mica van der Waals heterostructures.
    Mohrmann J; Watanabe K; Taniguchi T; Danneau R
    Nanotechnology; 2015 Jan; 26(1):015202. PubMed ID: 25483818
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photovoltaic effect in an electrically tunable van der Waals heterojunction.
    Furchi MM; Pospischil A; Libisch F; Burgdörfer J; Mueller T
    Nano Lett; 2014 Aug; 14(8):4785-91. PubMed ID: 25057817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of 2D Layered BiI
    Li J; Guan X; Wang C; Cheng HC; Ai R; Yao K; Chen P; Zhang Z; Duan X; Duan X
    Small; 2017 Oct; 13(38):. PubMed ID: 28791794
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure.
    Phuc HV; Hieu NN; Hoi BD; Nguyen CV
    Phys Chem Chem Phys; 2018 Jul; 20(26):17899-17908. PubMed ID: 29926024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.