These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 30746444)

  • 61. Large Tunneling Magnetoresistance in van der Waals Ferromagnet/Semiconductor Heterojunctions.
    Zhu W; Lin H; Yan F; Hu C; Wang Z; Zhao L; Deng Y; Kudrynskyi ZR; Zhou T; Kovalyuk ZD; Zheng Y; Patanè A; Žutić I; Li S; Zheng H; Wang K
    Adv Mater; 2021 Dec; 33(51):e2104658. PubMed ID: 34642998
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Atomic layer MoS
    Ye F; Lee J; Feng PX
    Nanoscale; 2017 Nov; 9(46):18208-18215. PubMed ID: 29160324
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Synthetic Nanosheets of Natural van der Waals Heterostructures.
    Banik A; Biswas K
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14561-14566. PubMed ID: 28892264
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bi
    Bi Y; Yang Y; Shi XL; Feng L; Hou X; Ye X; Zhang L; Suo G; Chen J; Chen ZG
    J Colloid Interface Sci; 2021 Jul; 593():196-203. PubMed ID: 33744530
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The hot pick-up technique for batch assembly of van der Waals heterostructures.
    Pizzocchero F; Gammelgaard L; Jessen BS; Caridad JM; Wang L; Hone J; Bøggild P; Booth TJ
    Nat Commun; 2016 Jun; 7():11894. PubMed ID: 27305833
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microsphere-coupled light emission control of van der Waals heterostructures.
    Lee H; Nguyen VT; Park JY; Lee J
    Nanoscale; 2021 Feb; 13(7):4262-4268. PubMed ID: 33595024
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Two-Terminal Multibit Optical Memory via van der Waals Heterostructure.
    Tran MD; Kim H; Kim JS; Doan MH; Chau TK; Vu QA; Kim JH; Lee YH
    Adv Mater; 2019 Feb; 31(7):e1807075. PubMed ID: 30589128
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fermi-Level Pinning-Free WSe
    Jang J; Ra HS; Ahn J; Kim TW; Song SH; Park S; Taniguch T; Watanabe K; Lee K; Hwang DK
    Adv Mater; 2022 May; 34(19):e2109899. PubMed ID: 35306686
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Tunable Electron and Hole Injection Enabled by Atomically Thin Tunneling Layer for Improved Contact Resistance and Dual Channel Transport in MoS
    Khan MA; Rathi S; Lee C; Lim D; Kim Y; Yun SJ; Youn DH; Kim GH
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23961-23967. PubMed ID: 29938500
    [TBL] [Abstract][Full Text] [Related]  

  • 70. All-Printable ZnO Quantum Dots/Graphene van der Waals Heterostructures for Ultrasensitive Detection of Ultraviolet Light.
    Gong M; Liu Q; Cook B; Kattel B; Wang T; Chan WL; Ewing D; Casper M; Stramel A; Wu JZ
    ACS Nano; 2017 Apr; 11(4):4114-4123. PubMed ID: 28328198
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Photoresponse of Natural van der Waals Heterostructures.
    Ray K; Yore AE; Mou T; Jha S; Smithe KKH; Wang B; Pop E; Newaz AKM
    ACS Nano; 2017 Jun; 11(6):6024-6030. PubMed ID: 28485958
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures.
    He J; Kumar N; Bellus MZ; Chiu HY; He D; Wang Y; Zhao H
    Nat Commun; 2014 Nov; 5():5622. PubMed ID: 25421098
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.
    Samad L; Bladow SM; Ding Q; Zhuo J; Jacobberger RM; Arnold MS; Jin S
    ACS Nano; 2016 Jul; 10(7):7039-46. PubMed ID: 27373305
    [TBL] [Abstract][Full Text] [Related]  

  • 74. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.
    Wang X; Zebarjadi M; Esfarjani K
    Nanoscale; 2016 Aug; 8(31):14695-704. PubMed ID: 27314610
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gate-Tunable Tunneling Resistance in Graphene/Topological Insulator Vertical Junctions.
    Zhang L; Yan Y; Wu HC; Yu D; Liao ZM
    ACS Nano; 2016 Mar; 10(3):3816-22. PubMed ID: 26930548
    [TBL] [Abstract][Full Text] [Related]  

  • 76. 2D materials and van der Waals heterostructures.
    Novoselov KS; Mishchenko A; Carvalho A; Castro Neto AH
    Science; 2016 Jul; 353(6298):aac9439. PubMed ID: 27471306
    [TBL] [Abstract][Full Text] [Related]  

  • 77. van der Waals Layered Materials: Opportunities and Challenges.
    Duong DL; Yun SJ; Lee YH
    ACS Nano; 2017 Dec; 11(12):11803-11830. PubMed ID: 29219304
    [TBL] [Abstract][Full Text] [Related]  

  • 78. van der Waals screening by single-layer graphene and molybdenum disulfide.
    Tsoi S; Dev P; Friedman AL; Stine R; Robinson JT; Reinecke TL; Sheehan PE
    ACS Nano; 2014 Dec; 8(12):12410-7. PubMed ID: 25412420
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ultrasensitive Near-Infrared Photodetectors Based on a Graphene-MoTe
    Zhang K; Fang X; Wang Y; Wan Y; Song Q; Zhai W; Li Y; Ran G; Ye Y; Dai L
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5392-5398. PubMed ID: 28111947
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Inclined Ultrathin Bi
    Hong C; Tao Y; Nie A; Zhang M; Wang N; Li R; Huang J; Huang Y; Ren X; Cheng Y; Liu X
    ACS Nano; 2020 Dec; 14(12):16803-16812. PubMed ID: 33206523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.