These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 30746475)

  • 21. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.
    Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z
    Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning the Transport Properties of Gases in Porous Graphene Membranes with Controlled Pore Size and Thickness.
    Ashirov T; Yazaydin AO; Coskun A
    Adv Mater; 2022 Feb; 34(5):e2106785. PubMed ID: 34775644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analytical Prediction of Gas Permeation through Graphene Nanopores of Varying Sizes: Understanding Transitions across Multiple Transport Regimes.
    Yuan Z; Misra RP; Rajan AG; Strano MS; Blankschtein D
    ACS Nano; 2019 Oct; 13(10):11809-11824. PubMed ID: 31532624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advancing Molecular Sieving via Å-Scale Pore Tuning in Bottom-Up Graphene Synthesis.
    Goethem CV; Shen Y; Chi HY; Mensi M; Zhao K; Nijmeijer A; Just PE; Agrawal KV
    ACS Nano; 2024 Feb; 18(7):5730-40. PubMed ID: 38324377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From molecular sieving to gas effusion through nanoporous 2D graphenes: Comparison between analytical predictions and molecular simulations.
    Guo J; Galliero G; Vermorel R
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study.
    Jiao S; Xu Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9052-9. PubMed ID: 25868398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene-Coated Halloysite Nanoclay Membrane for the Enhanced Separation of Hydrogen from a Hydrogen-Helium Mixture.
    Dutta S; Das N
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32444-32456. PubMed ID: 35793082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion-Gated Gas Separation through Porous Graphene.
    Tian Z; Mahurin SM; Dai S; Jiang DE
    Nano Lett; 2017 Mar; 17(3):1802-1807. PubMed ID: 28231000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-scale synthesis of crystalline g-C
    Villalobos LF; Vahdat MT; Dakhchoune M; Nadizadeh Z; Mensi M; Oveisi E; Campi D; Marzari N; Agrawal KV
    Sci Adv; 2020 Jan; 6(4):eaay9851. PubMed ID: 32064325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Knudsen effusion through polymer-coated three-layer porous graphene membranes.
    Boutilier MS; Hadjiconstantinou NG; Karnik R
    Nanotechnology; 2017 May; 28(18):184003. PubMed ID: 28323253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Asymmetric Two-Layer Porous Membrane for Gas Separation.
    Liu M; Song D; Wang X; Sun C; Jing D
    J Phys Chem Lett; 2020 Aug; 11(15):6359-6363. PubMed ID: 32692922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extremely permeable porous graphene with high H
    Shimizu K; Ohba T
    Phys Chem Chem Phys; 2017 Jul; 19(28):18201-18207. PubMed ID: 28675236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation.
    Sun C; Bai B
    Sci Bull (Beijing); 2017 Apr; 62(8):554-562. PubMed ID: 36659363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study.
    Wang Y; Yang Q; Li J; Yang J; Zhong C
    Phys Chem Chem Phys; 2016 Mar; 18(12):8352-8. PubMed ID: 26701145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pore-in-Pore Engineering in a Covalent Organic Framework Membrane for Gas Separation.
    Fan H; Wang H; Peng M; Meng H; Mundstock A; Knebel A; Caro J
    ACS Nano; 2023 Apr; 17(8):7584-7594. PubMed ID: 37026681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Broadening the Gas Separation Utility of Monolayer Nanoporous Graphene Membranes by an Ionic Liquid Gating.
    Guo W; Mahurin SM; Unocic RR; Luo H; Dai S
    Nano Lett; 2020 Nov; 20(11):7995-8000. PubMed ID: 33064492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single- to Few-Layered, Graphene-Based Separation Membranes.
    Zhou F; Fathizadeh M; Yu M
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():17-39. PubMed ID: 29570357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Confined-Coordination Induced Intergrowth of Metal-Organic Frameworks into Precise Molecular Sieving Membranes.
    Liu G; Mo B; Guo Y; Chu Z; Ren XM; Guan K; Miao R; Wang Z; Zhang Y; Ji W; Liu G; Matsuyama H; Jin W
    Angew Chem Int Ed Engl; 2024 Jun; 63(24):e202405676. PubMed ID: 38606914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical Evaluation of Graphene Membrane Performance for Hydrogen Separation Using Molecular Dynamic Simulation.
    Nouri M; Ghasemzadeh K; Iulianelli A
    Membranes (Basel); 2019 Aug; 9(9):. PubMed ID: 31461938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity.
    Huang A; Liu Q; Wang N; Zhu Y; Caro J
    J Am Chem Soc; 2014 Oct; 136(42):14686-9. PubMed ID: 25290574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.