These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 30746572)
1. Lipopolysaccharide Polyelectrolyte Complex for Oral Delivery of an Anti-tubercular Drug. Sumaila M; Ramburrun P; Kumar P; Choonara YE; Pillay V AAPS PharmSciTech; 2019 Feb; 20(3):107. PubMed ID: 30746572 [TBL] [Abstract][Full Text] [Related]
2. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis. Chokshi NV; Khatri HN; Patel MM Drug Dev Ind Pharm; 2018 Dec; 44(12):1975-1989. PubMed ID: 30058392 [TBL] [Abstract][Full Text] [Related]
3. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Vieira ACC; Chaves LL; Pinheiro S; Pinto S; Pinheiro M; Lima SC; Ferreira D; Sarmento B; Reis S Int J Pharm; 2018 Jan; 536(1):478-485. PubMed ID: 29203137 [TBL] [Abstract][Full Text] [Related]
4. Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs. Mehta SK; Jindal N Colloids Surf B Biointerfaces; 2013 Jan; 101():434-41. PubMed ID: 23010052 [TBL] [Abstract][Full Text] [Related]
6. Formulation and in vitro characterization of inhalable polyvinyl alcohol-free rifampicin-loaded PLGA microspheres prepared with sucrose palmitate as stabilizer: efficiency for ex vivo alveolar macrophage targeting. Diab R; Brillault J; Bardy A; Gontijo AV; Olivier JC Int J Pharm; 2012 Oct; 436(1-2):833-9. PubMed ID: 22846409 [TBL] [Abstract][Full Text] [Related]
7. Preparation of Curdlan sulphate - Chitosan nanoparticles as a drug carrier to target Mycobacterium smegmatis infected macrophages. Ravindran R; Mitra K; Arumugam SK; Doble M Carbohydr Polym; 2021 Apr; 258():117686. PubMed ID: 33593559 [TBL] [Abstract][Full Text] [Related]
8. A mesoporous silicon/poly-(DL-lactic-co-glycolic) acid microsphere for long time anti-tuberculosis drug delivery. Xu W; Wei X; Wei K; Cao X; Zhong S Int J Pharm; 2014 Dec; 476(1-2):116-23. PubMed ID: 25271077 [TBL] [Abstract][Full Text] [Related]
9. Development and optimization of polymeric nanoparticles of antitubercular drugs using central composite factorial design. Chawla R; Jaiswal S; Mishra B Expert Opin Drug Deliv; 2014 Jan; 11(1):31-43. PubMed ID: 23802585 [TBL] [Abstract][Full Text] [Related]
10. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. Bellini RG; Guimarães AP; Pacheco MA; Dias DM; Furtado VR; de Alencastro RB; Horta BA J Mol Graph Model; 2015 Jul; 60():34-42. PubMed ID: 26093506 [TBL] [Abstract][Full Text] [Related]
11. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery. Wang F; Yang Y; Ju X; Udenigwe CC; He R J Agric Food Chem; 2018 Mar; 66(11):2685-2693. PubMed ID: 29451796 [TBL] [Abstract][Full Text] [Related]
12. Nano-formulation of rifampicin with enhanced bioavailability: development, characterization and in-vivo safety. Singh H; Jindal S; Singh M; Sharma G; Kaur IP Int J Pharm; 2015 May; 485(1-2):138-51. PubMed ID: 25769294 [TBL] [Abstract][Full Text] [Related]
13. Rifampicin-loaded 'flower-like' polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid. Moretton MA; Hocht C; Taira C; Sosnik A Nanomedicine (Lond); 2014 Aug; 9(11):1635-50. PubMed ID: 24410279 [TBL] [Abstract][Full Text] [Related]
14. Chitosan based in situ forming polyelectrolyte complexes: A potential sustained drug delivery polymeric carrier for high dose drugs. Lal N; Dubey J; Gaur P; Verma N; Verma A Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():491-498. PubMed ID: 28629045 [TBL] [Abstract][Full Text] [Related]
15. Adhesive Drug Delivery Systems Based on Polyelectrolyte Complex Nanoparticles (PEC NP) for Bone Healing. Muller M; Vehlow D; Torger B; Urban B; Woltmann B; Hempel U Curr Pharm Des; 2018; 24(13):1341-1348. PubMed ID: 29237375 [TBL] [Abstract][Full Text] [Related]
16. Self-assembled insulin and nanogels polyelectrolyte complex (Ins/NGs-PEC) for oral insulin delivery: characterization, lyophilization and in-vivo evaluation. Mudassir J; Darwis Y; Muhamad S; Khan AA Int J Nanomedicine; 2019; 14():4895-4909. PubMed ID: 31456636 [No Abstract] [Full Text] [Related]
17. Nanostructured polyelectrolyte complexes based on chitosan and sodium alginate containing rifampicin for the potential treatment of tuberculosis. Turco BO; Boni FI; Gremião MPD; Chorilli M Drug Dev Ind Pharm; 2021 Dec; 47(12):1904-1914. PubMed ID: 35236214 [TBL] [Abstract][Full Text] [Related]
18. Encapsulation of zinc-rifampicin complex into transferrin-conjugated silver quantum-dots improves its antimycobacterial activity and stability and facilitates drug delivery into macrophages. Pati R; Sahu R; Panda J; Sonawane A Sci Rep; 2016 Apr; 6():24184. PubMed ID: 27113139 [TBL] [Abstract][Full Text] [Related]
19. Development of Novel Octanoyl Chitosan Nanoparticles for Improved Rifampicin Pulmonary Delivery: Optimization by Factorial Design. Petkar KC; Chavhan S; Kunda N; Saleem I; Somavarapu S; Taylor KMG; Sawant KK AAPS PharmSciTech; 2018 May; 19(4):1758-1772. PubMed ID: 29589222 [TBL] [Abstract][Full Text] [Related]
20. Quaternized curdlan/pectin polyelectrolyte complexes as biocompatible nanovehicles for curcumin. Wu LX; Qiao ZR; Cai WD; Qiu WY; Yan JK Food Chem; 2019 Sep; 291():180-186. PubMed ID: 31006457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]