These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30746946)

  • 1. Grooved Dayem Nanobridges as Building Blocks of High-Performance YBa
    Trabaldo E; Pfeiffer C; Andersson E; Arpaia R; Kalaboukhov A; Winkler D; Lombardi F; Bauch T
    Nano Lett; 2019 Mar; 19(3):1902-1907. PubMed ID: 30746946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A High-Performance Nb Nano-Superconducting Quantum Interference Device with a Three-Dimensional Structure.
    Chen L; Wang H; Liu X; Wu L; Wang Z
    Nano Lett; 2016 Dec; 16(12):7726-7730. PubMed ID: 27960520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct-coupled micro-magnetometer with Y-Ba-Cu-O nano-slit SQUID fabricated with a focused helium ion beam.
    Cho EY; Li H; LeFebvre JC; Zhou YW; Dynes RC; Cybart SA
    Appl Phys Lett; 2018 Oct; 113(16):162602. PubMed ID: 30364078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications.
    Granata C; Esposito E; Vettoliere A; Petti L; Russo M
    Nanotechnology; 2008 Jul; 19(27):275501. PubMed ID: 21828707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields.
    Schwarz T; Nagel J; Wölbing R; Kemmler M; Kleiner R; Koelle D
    ACS Nano; 2013 Jan; 7(1):844-50. PubMed ID: 23252846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications.
    Granata C; Vettoliere A; Russo M
    Rev Sci Instrum; 2011 Jan; 82(1):013901. PubMed ID: 21280839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 7-Channel High-[Formula: see text] SQUID-Based On-Scalp MEG System.
    Pfeiffer C; Ruffieux S; Jonsson L; Chukharkin ML; Kalaboukhov A; Xie M; Winkler D; Schneiderman JF
    IEEE Trans Biomed Eng; 2020 May; 67(5):1483-1489. PubMed ID: 31484107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. YBa
    Lin J; Müller B; Linek J; Karrer M; Wenzel M; Martínez-Pérez MJ; Kleiner R; Koelle D
    Nanoscale; 2020 Mar; 12(9):5658-5668. PubMed ID: 32101218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superconductive quantum interference magnetometer with high sensitivity achieved by an induced resonance.
    Vettoliere A; Granata C
    Rev Sci Instrum; 2014 Aug; 85(8):085006. PubMed ID: 25173305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superconducting Quantum Interferometers for Nondestructive Evaluation.
    Faley MI; Kostyurina EA; Kalashnikov KV; Maslennikov YV; Koshelets VP; Dunin-Borkowski RE
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29210980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High temperature RF SQUIDs for biomedical applications.
    Zhang Y; Tavrin Y; Mück M; Braginski AI; Heiden C; Elbert T; Hampson S
    Physiol Meas; 1993 May; 14(2):113-9. PubMed ID: 8334406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Axis Vector Nano Superconducting Quantum Interference Device.
    Martínez-Pérez MJ; Gella D; Müller B; Morosh V; Wölbing R; Sesé J; Kieler O; Kleiner R; Koelle D
    ACS Nano; 2016 Sep; 10(9):8308-15. PubMed ID: 27332709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope.
    Shibata Y; Nomura S; Kashiwaya H; Kashiwaya S; Ishiguro R; Takayanagi H
    Sci Rep; 2015 Oct; 5():15097. PubMed ID: 26459874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 37-channel DC SQUID magnetometer system.
    Drung D; Zimmermann R; Cantor R; Erné SN; Koch H; Matthies KP; Peters M; Scheer HJ; Stollfuss D
    Clin Phys Physiol Meas; 1991; 12 Suppl B():21-9. PubMed ID: 1807875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D nano-bridge-based SQUID susceptometers for scanning magnetic imaging of quantum materials.
    Pan YP; Wang SY; Liu XY; Lin YS; Ma LX; Feng Y; Wang Z; Chen L; Wang YH
    Nanotechnology; 2019 Jul; 30(30):305303. PubMed ID: 30965292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Impact of High-Temperature Superconductivity on SQUID Magnetometers.
    Clarke J; Koch RH
    Science; 1988 Oct; 242(4876):217-23. PubMed ID: 17787650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine-Tuning and Optimization of Superconducting Quantum Magnetic Sensors by Thermal Annealing.
    Vettoliere A; Ruggiero B; Valentino M; Silvestrini P; Granata C
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31438525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K.
    Nagendran R; Thirumurugan N; Chinnasamy N; Janawadkar MP; Sundar CS
    Rev Sci Instrum; 2011 Jan; 82(1):015109. PubMed ID: 21280860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-high critical current densities of superconducting YBa
    Stangl A; Palau A; Deutscher G; Obradors X; Puig T
    Sci Rep; 2021 Apr; 11(1):8176. PubMed ID: 33854183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.
    Takeda K; Mori H; Yamaguchi A; Ishimoto H; Nakamura T; Kuriki S; Hozumi T; Ohkoshi S
    Rev Sci Instrum; 2008 Mar; 79(3):033909. PubMed ID: 18377027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.