These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 30747)
1. ATP hydrolysis and synthesis by the membrane-bound ATP synthetase complex of Methanobacterium thermoautotrophicum. Doddema HJ; Hutten TJ; van der Drift C; Vogels GD J Bacteriol; 1978 Oct; 136(1):19-23. PubMed ID: 30747 [TBL] [Abstract][Full Text] [Related]
2. Chemiosmotic coupling in Methanobacterium thermoautotrophicum: hydrogen-dependent adenosine 5'-triphosphate synthesis by subcellular particles. Doddema HJ; van der Drift C; Vogels GD; Veenhuis M J Bacteriol; 1979 Dec; 140(3):1081-9. PubMed ID: 160408 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial adenosinetriphosphatase inhibitor protein: reversible interaction with complex V (ATP synthetase complex). Galante YM; Wong SY; Hatefi Y Biochemistry; 1981 Apr; 20(9):2671-8. PubMed ID: 6263316 [TBL] [Abstract][Full Text] [Related]
4. Adenosine 5'-triphosphate synthesis energized by an artificially imposed membrane potential in membrane vesicles of Escherichia coli. Tsuchiya T; Rosen BP J Bacteriol; 1976 Jul; 127(1):154-61. PubMed ID: 6430 [TBL] [Abstract][Full Text] [Related]
5. Hydrolysis and synthesis of ATP by membrane-bound ATPase from a motile Streptococcus. van der Drift C; Janssen DB; van Wezenbeek PM Arch Microbiol; 1978 Oct; 119(1):31-6. PubMed ID: 31147 [TBL] [Abstract][Full Text] [Related]
6. A mutant ATP synthetase of Escherichia coli with an altered sensitivity to N,N' -dicyclohexylcarbodiimide: characterization in native membranes and reconstituted proteoliposomes. Friedl P; Schmid BI; Schairer HU Eur J Biochem; 1977 Mar; 73(2):461-8. PubMed ID: 14831 [TBL] [Abstract][Full Text] [Related]
7. Correlations between ATP hydrolysis, ATP synthesis, generation and utilization of delta pH in mitochondrial ATPase-ATP synthase. Deléage G; Penin F; Godinot C; Gautheron DC Biochim Biophys Acta; 1983 Dec; 725(3):464-71. PubMed ID: 6197086 [TBL] [Abstract][Full Text] [Related]
8. Identification of a vanadate-sensitive, membrane-bound ATPase in the archaebacterium Methanococcus voltae. Dharmavaram RM; Konisky J J Bacteriol; 1987 Sep; 169(9):3921-5. PubMed ID: 2957358 [TBL] [Abstract][Full Text] [Related]
9. The stepwise hydrolysis of adenine nucleotides by ectoenzymes of rat renal brush-border membranes. Culić O; Sabolić I; Zanić-Grubisić T Biochim Biophys Acta; 1990 Nov; 1030(1):143-51. PubMed ID: 2176100 [TBL] [Abstract][Full Text] [Related]
10. Na(+)-driven ATP synthesis in Methanobacterium thermoautotrophicum and its differentiation from H(+)-driven ATP synthesis by rhodamine 6G. Smigán P; Majerník A; Greksák M FEBS Lett; 1994 Aug; 349(3):424-8. PubMed ID: 8050608 [TBL] [Abstract][Full Text] [Related]
11. Na(+)-driven ATP synthesis in Methanobacterium thermoautotrophicum and its differentiation from H(+)-driven ATP synthesis by rhodamine 6G. Smigán P; Majerník A; Greksák M FEBS Lett; 1994 Jun; 347(2-3):190-4. PubMed ID: 8034000 [TBL] [Abstract][Full Text] [Related]
12. Conformational changes in cytochrome aa3 and ATP synthetase of the mitochondrial membrane and their role in mitochondrial energy transduction. Wikström MK; Saari HT Mol Cell Biochem; 1976 Mar; 11(1):17-33. PubMed ID: 5667 [TBL] [Abstract][Full Text] [Related]
13. ATP synthesis coupled to methane formation from methyl-CoM and H2 catalyzed by vesicles of the methanogenic bacterial strain Gö1. Peinemann S; Blaut M; Gottschalk G Eur J Biochem; 1989 Dec; 186(1-2):175-80. PubMed ID: 2557206 [TBL] [Abstract][Full Text] [Related]
14. Identification of amino-acid substitutions in the proteolipid subunit of the ATP synthase from dicyclohexylcarbodiimide-resistant mutants of Escherichia coli. Hoppe J; Schairer HU; Sebald W Eur J Biochem; 1980 Nov; 112(1):17-24. PubMed ID: 6256167 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient. Michel H; Oesterhelt D Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619 [TBL] [Abstract][Full Text] [Related]
16. Dimensional probes of the enzyme binding sites of adenine nucleotides. Interaction of lin-benzoadenosine 5'-di- and triphosphate with mitochondrial ATP synthetase, purified ATPase, and the adenine nucleotide carrier. Kauffman RF; Lardy HA; Barrio JR; Bario MC; Leonard NJ Biochemistry; 1978 Sep; 17(18):3686-92. PubMed ID: 212101 [No Abstract] [Full Text] [Related]
17. Properties of the N,N'-dicyclohexylcarbodiimide resistant ATPase of Streptococcus cremoris. Rimpiläinen MA Int J Biochem; 1987; 19(8):729-32. PubMed ID: 2957254 [TBL] [Abstract][Full Text] [Related]
18. The ATP-binding cassette (ABC) transporter for maltose/maltodextrins of Salmonella typhimurium. Characterization of the ATPase activity associated with the purified MalK subunit. Morbach S; Tebbe S; Schneider E J Biol Chem; 1993 Sep; 268(25):18617-21. PubMed ID: 8360157 [TBL] [Abstract][Full Text] [Related]
19. Probes of catalytic site cooperativity during catalysis by the chloroplast adenosine triphosphate and the adenosine triphosphate synthase. Kohlbrenner WE; Boyer PD J Biol Chem; 1983 Sep; 258(18):10881-6. PubMed ID: 6309819 [TBL] [Abstract][Full Text] [Related]
20. The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum. 1. ATP phosphohydrolase activity. Clarke DJ; Fuller FM; Morris JG Eur J Biochem; 1979 Aug; 98(2):597-612. PubMed ID: 39758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]