These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30747169)

  • 1. Temperature dependent specific ion effects in mixed salt environments on a thermoresponsive poly(oligoethylene glycol methacrylate) brush.
    Johnson EC; Murdoch TJ; Gresham IJ; Humphreys BA; Prescott SW; Nelson A; Webber GB; Wanless EJ
    Phys Chem Chem Phys; 2019 Feb; 21(8):4650-4662. PubMed ID: 30747169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive specific ion effects in mixed salt solutions on a thermoresponsive polymer brush.
    Robertson H; Johnson EC; Gresham IJ; Prescott SW; Nelson A; Wanless EJ; Webber GB
    J Colloid Interface Sci; 2021 Mar; 586():292-304. PubMed ID: 33189318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced specific ion effects in ethylene glycol-based thermoresponsive polymer brushes.
    Murdoch TJ; Humphreys BA; Willott JD; Prescott SW; Nelson A; Webber GB; Wanless EJ
    J Colloid Interface Sci; 2017 Mar; 490():869-878. PubMed ID: 28006724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anion-specific effects on the behavior of pH-sensitive polybasic brushes.
    Willott JD; Murdoch TJ; Humphreys BA; Edmondson S; Wanless EJ; Webber GB
    Langmuir; 2015 Mar; 31(12):3707-17. PubMed ID: 25768282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific ion modulated thermoresponse of poly(N-isopropylacrylamide) brushes.
    Humphreys BA; Willott JD; Murdoch TJ; Webber GB; Wanless EJ
    Phys Chem Chem Phys; 2016 Feb; 18(8):6037-46. PubMed ID: 26840183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase transition characterization of poly(oligo(ethylene glycol)methyl ether methacrylate) brushes using the quartz crystal microbalance with dissipation.
    Guntnur RT; Muzzio N; Morales M; Romero G
    Soft Matter; 2021 Mar; 17(9):2530-2538. PubMed ID: 33508060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific ion effects on thermoresponsive polymer brushes: Comparison to other architectures.
    Murdoch TJ; Humphreys BA; Johnson EC; Webber GB; Wanless EJ
    J Colloid Interface Sci; 2018 Sep; 526():429-450. PubMed ID: 29763821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature Dependence of the Surface and Volume Hydrophilicity of Hydrophilic Polymer Brushes.
    Zhuang P; Dirani A; Glinel K; Jonas AM
    Langmuir; 2016 Apr; 32(14):3433-44. PubMed ID: 27003634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface and bulk collapse transitions of thermoresponsive polymer brushes.
    Laloyaux X; Mathy B; Nysten B; Jonas AM
    Langmuir; 2010 Jan; 26(2):838-47. PubMed ID: 19842635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swelling enhancement of polyelectrolyte brushes induced by external ions.
    Chu X; Yang J; Liu G; Zhao J
    Soft Matter; 2014 Aug; 10(30):5568-78. PubMed ID: 24960144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explanation for the apparent absence of collapse of polyelectrolyte brushes in the presence of bulky ions.
    Moya SE; Azzaroni O; Kelby T; Donath E; Huck WT
    J Phys Chem B; 2007 Jun; 111(25):7034-40. PubMed ID: 17552557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic effects within the dynamic pH-response of polybasic tertiary amine methacrylate brushes.
    Willott JD; Humphreys BA; Murdoch TJ; Edmondson S; Webber GB; Wanless EJ
    Phys Chem Chem Phys; 2015 Feb; 17(5):3880-90. PubMed ID: 25559878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quartz crystal microbalance study of ionic strength and pH-dependent polymer conformation and protein adsorption/desorption on PAA, PEO, and mixed PEO/PAA brushes.
    Delcroix MF; Demoustier-Champagne S; Dupont-Gillain CC
    Langmuir; 2014 Jan; 30(1):268-77. PubMed ID: 24328402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt- and pH-induced swelling of a poly(acrylic acid) brush via quartz crystal microbalance w/dissipation (QCM-D).
    Hollingsworth NR; Wilkanowicz SI; Larson RG
    Soft Matter; 2019 Oct; 15(39):7838-7851. PubMed ID: 31528970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water content of hydrated polymer brushes measured by an in situ combination of a quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry.
    Ramos JJ; Moya SE
    Macromol Rapid Commun; 2011 Dec; 32(24):1972-8. PubMed ID: 22121006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Counterion Specificity of Polyelectrolyte Brushes: Role of Specific Ion-Pairing Interactions.
    Kou R; Zhang J; Chen Z; Liu G
    Chemphyschem; 2018 Jun; 19(11):1404-1413. PubMed ID: 29575481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between Polyelectrolyte Brushes and Hofmeister Ions: Chaotropes versus Kosmotropes.
    Kou R; Zhang J; Wang T; Liu G
    Langmuir; 2015 Sep; 31(38):10461-8. PubMed ID: 26359677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical salt effects in the swelling behavior of a weak polybasic brush.
    Willott JD; Murdoch TJ; Humphreys BA; Edmondson S; Webber GB; Wanless EJ
    Langmuir; 2014 Feb; 30(7):1827-36. PubMed ID: 24476028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Analysis of Polymer Brush Formation Kinetics Using Quartz Crystal Microbalance: Viscoelasticity of Polymer Brush.
    Tanoue H; Yamada NL; Ito K; Yokoyama H
    Langmuir; 2017 May; 33(21):5166-5172. PubMed ID: 28426224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ionic strength and salt identity on poly(N-isopropylacrylamide) brush modified colloidal silica particles.
    Humphreys BA; Wanless EJ; Webber GB
    J Colloid Interface Sci; 2018 Apr; 516():153-161. PubMed ID: 29367066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.