These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30747515)

  • 1. Oxygen Management at the Microscale: A Functional Biochip Material with Long-Lasting and Tunable Oxygen Scavenging Properties for Cell Culture Applications.
    Sticker D; Rothbauer M; Ehgartner J; Steininger C; Liske O; Liska R; Neuhaus W; Mayr T; Haraldsson T; Kutter JP; Ertl P
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9730-9739. PubMed ID: 30747515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-Ene Based Polymers as Versatile Materials for Microfluidic Devices for Life Sciences Applications.
    Sticker D; Geczy R; Häfeli UO; Kutter JP
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10080-10095. PubMed ID: 32048822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Biomolecule Microarrays Using Rapid Photochemical Surface Patterning in Thiol-Ene-Based Microfluidic Devices.
    Jönsson A; Lafleur JP
    Methods Mol Biol; 2018; 1771():171-182. PubMed ID: 29633213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The material-enabled oxygen control in thiol-ene microfluidic channels and its feasibility for subcellular drug metabolism assays under hypoxia
    Kiiski I; Järvinen P; Ollikainen E; Jokinen V; Sikanen T
    Lab Chip; 2021 May; 21(9):1820-1831. PubMed ID: 33949410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface functionalized thiol-ene waveguides for fluorescence biosensing in microfluidic devices.
    Feidenhans'l NA; Lafleur JP; Jensen TG; Kutter JP
    Electrophoresis; 2014 Feb; 35(2-3):282-8. PubMed ID: 23983194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiol-ene microfluidic devices for microchip electrophoresis: Effects of curing conditions and monomer composition on surface properties.
    Tähkä SM; Bonabi A; Nordberg ME; Kanerva M; Jokinen VP; Sikanen TM
    J Chromatogr A; 2015 Dec; 1426():233-40. PubMed ID: 26654831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid photochemical surface patterning of proteins in thiol-ene based microfluidic devices.
    Lafleur JP; Kwapiszewski R; Jensen TG; Kutter JP
    Analyst; 2013 Feb; 138(3):845-9. PubMed ID: 23193537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications.
    Sticker D; Rothbauer M; Lechner S; Hehenberger MT; Ertl P
    Lab Chip; 2015 Dec; 15(24):4542-54. PubMed ID: 26524977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen control with microfluidics.
    Brennan MD; Rexius-Hall ML; Elgass LJ; Eddington DT
    Lab Chip; 2014 Nov; 14(22):4305-18. PubMed ID: 25251498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft-lithography fabrication of microfluidic features using thiol-ene formulations.
    Ashley JF; Cramer NB; Davis RH; Bowman CN
    Lab Chip; 2011 Aug; 11(16):2772-8. PubMed ID: 21691663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic-Based Oxygen (O
    Azimzadeh M; Khashayar P; Amereh M; Tasnim N; Hoorfar M; Akbari M
    Biosensors (Basel); 2021 Dec; 12(1):. PubMed ID: 35049634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of proteolytic enzymes on replica-molded thiol-ene micropillar reactors via thiol-gold interaction.
    Tähkä S; Sarfraz J; Urvas L; Provenzani R; Wiedmer SK; Peltonen J; Jokinen V; Sikanen T
    Anal Bioanal Chem; 2019 Apr; 411(11):2339-2349. PubMed ID: 30899997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Making the invisible visible: a microfluidic chip using a low refractive index polymer.
    Hanada Y; Ogawa T; Koike K; Sugioka K
    Lab Chip; 2016 Jul; 16(13):2481-6. PubMed ID: 27265196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Every Breath You Take: Non-invasive Real-Time Oxygen Biosensing in Two- and Three-Dimensional Microfluidic Cell Models.
    Zirath H; Rothbauer M; Spitz S; Bachmann B; Jordan C; Müller B; Ehgartner J; Priglinger E; Mühleder S; Redl H; Holnthoner W; Harasek M; Mayr T; Ertl P
    Front Physiol; 2018; 9():815. PubMed ID: 30018569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors.
    Sin A; Chin KC; Jamil MF; Kostov Y; Rao G; Shuler ML
    Biotechnol Prog; 2004; 20(1):338-45. PubMed ID: 14763861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices.
    Godino N; Gorkin R; Bourke K; Ducrée J
    Lab Chip; 2012 Sep; 12(18):3281-4. PubMed ID: 22842728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous and non-aqueous microchip electrophoresis with on-chip electrospray ionization mass spectrometry on replica-molded thiol-ene microfluidic devices.
    Tähkä SM; Bonabi A; Jokinen VP; Sikanen TM
    J Chromatogr A; 2017 May; 1496():150-156. PubMed ID: 28347516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Platform for the Long-Term On-Chip Cultivation of Mammalian Cells for Lab-On-A-Chip Applications.
    Bunge F; Driesche SVD; Vellekoop MJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28698531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol-ene Monolithic Pepsin Microreactor with a 3D-Printed Interface for Efficient UPLC-MS Peptide Mapping Analyses.
    Jönsson A; Svejdal RR; Bøgelund N; Nguyen TTTN; Flindt H; Kutter JP; Rand KD; Lafleur JP
    Anal Chem; 2017 Apr; 89(8):4573-4580. PubMed ID: 28322047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell adhesion pattern created by OSTE polymers.
    Liu W; Li Y; Ding X
    Biofabrication; 2017 Apr; 9(2):025006. PubMed ID: 28291020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.