BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 30747910)

  • 21. Which deep learning model can best explain object representations of within-category exemplars?
    Lee D
    J Vis; 2021 Sep; 21(10):12. PubMed ID: 34520508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.
    Dong Q; Wang H; Hu Z
    Neural Comput; 2018 Feb; 30(2):447-476. PubMed ID: 29162010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A visual encoding model based on deep neural networks and transfer learning for brain activity measured by functional magnetic resonance imaging.
    Zhang C; Qiao K; Wang L; Tong L; Hu G; Zhang RY; Yan B
    J Neurosci Methods; 2019 Sep; 325():108318. PubMed ID: 31255596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing neural encoding models for naturalistic perception with a multi-level integration of deep neural networks and cortical networks.
    Li Y; Yang H; Gu S
    Sci Bull (Beijing); 2024 Jun; 69(11):1738-1747. PubMed ID: 38490889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.
    Kim J; Calhoun VD; Shim E; Lee JH
    Neuroimage; 2016 Jan; 124(Pt A):127-146. PubMed ID: 25987366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting Cued and Oddball Visual Search Performance from fMRI, MEG, and DNN Neural Representational Similarity.
    Yeh 葉律君 LC; Thorat S; Peelen MV
    J Neurosci; 2024 Mar; 44(12):. PubMed ID: 38331583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNNBrain: A Unifying Toolbox for Mapping Deep Neural Networks and Brains.
    Chen X; Zhou M; Gong Z; Xu W; Liu X; Huang T; Zhen Z; Liu J
    Front Comput Neurosci; 2020; 14():580632. PubMed ID: 33328946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative biology approach to DNN modeling of vision: A focus on differences, not similarities.
    Lonnqvist B; Bornet A; Doerig A; Herzog MH
    J Vis; 2021 Sep; 21(10):17. PubMed ID: 34551062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A meta-analysis of fMRI decoding: Quantifying influences on human visual population codes.
    Coutanche MN; Solomon SH; Thompson-Schill SL
    Neuropsychologia; 2016 Feb; 82():134-141. PubMed ID: 26801229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding transformation tolerant visual object representations in the human brain and convolutional neural networks.
    Xu Y; Vaziri-Pashkam M
    Neuroimage; 2022 Nov; 263():119635. PubMed ID: 36116617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A robust deep neural network for denoising task-based fMRI data: An application to working memory and episodic memory.
    Yang Z; Zhuang X; Sreenivasan K; Mishra V; Curran T; Cordes D
    Med Image Anal; 2020 Feb; 60():101622. PubMed ID: 31811979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diverse Deep Neural Networks All Predict Human Inferior Temporal Cortex Well, After Training and Fitting.
    Storrs KR; Kietzmann TC; Walther A; Mehrer J; Kriegeskorte N
    J Cogn Neurosci; 2021 Sep; 33(10):2044-2064. PubMed ID: 34272948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interpretable deep neural networks for single-trial EEG classification.
    Sturm I; Lapuschkin S; Samek W; Müller KR
    J Neurosci Methods; 2016 Dec; 274():141-145. PubMed ID: 27746229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sharpening of Hierarchical Visual Feature Representations of Blurred Images.
    Abdelhack M; Kamitani Y
    eNeuro; 2018; 5(3):. PubMed ID: 29756028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-Semantic Decoding of Visual Perception with Graph Neural Networks.
    Li R; Li J; Wang C; Liu H; Liu T; Wang X; Zou T; Huang W; Yan H; Chen H
    Int J Neural Syst; 2024 Apr; 34(4):2450016. PubMed ID: 38372016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior.
    Groen II; Greene MR; Baldassano C; Fei-Fei L; Beck DM; Baker CI
    Elife; 2018 Mar; 7():. PubMed ID: 29513219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovering individual fingerprints in resting-state functional connectivity using deep neural networks.
    Lee J; Lee JH
    Hum Brain Mapp; 2024 Jan; 45(1):e26561. PubMed ID: 38096866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.
    Cichy RM; Khosla A; Pantazis D; Torralba A; Oliva A
    Sci Rep; 2016 Jun; 6():27755. PubMed ID: 27282108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hyperrealistic neural decoding for reconstructing faces from fMRI activations via the GAN latent space.
    Dado T; Güçlütürk Y; Ambrogioni L; Ras G; Bosch S; van Gerven M; Güçlü U
    Sci Rep; 2022 Jan; 12(1):141. PubMed ID: 34997012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feature selection may improve deep neural networks for the bioinformatics problems.
    Chen Z; Pang M; Zhao Z; Li S; Miao R; Zhang Y; Feng X; Feng X; Zhang Y; Duan M; Huang L; Zhou F
    Bioinformatics; 2020 Mar; 36(5):1542-1552. PubMed ID: 31591638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.