These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30747994)

  • 1. Polymerization rate difference of N-alkyl glycine NCAs: Steric hindrance or not?
    Bai T; Ling J
    Biopolymers; 2019 Apr; 110(4):e23261. PubMed ID: 30747994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFT Study on Amine-Mediated Ring-Opening Mechanism of α-Amino Acid N-Carboxyanhydride and N-Substituted Glycine N-Carboxyanhydride: Secondary Amine versus Primary Amine.
    Liu J; Ling J
    J Phys Chem A; 2015 Jul; 119(27):7070-4. PubMed ID: 26086174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polypeptoids by living ring-opening polymerization of N-substituted N-carboxyanhydrides from solid supports.
    Gangloff N; Fetsch C; Luxenhofer R
    Macromol Rapid Commun; 2013 Jun; 34(12):997-1001. PubMed ID: 23661431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of cyclic and linear helical poly(alpha-peptoids)s by N-heterocyclic carbene-mediated ring-opening polymerizations of N-substituted N-carboxyanhydrides.
    Guo L; Li J; Brown Z; Ghale K; Zhang D
    Biopolymers; 2011; 96(5):596-603. PubMed ID: 22180907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polypeptoid brushes by surface-initiated polymerization of N-substituted glycine N-carboxyanhydrides.
    Schneider M; Fetsch C; Amin I; Jordan R; Luxenhofer R
    Langmuir; 2013 Jun; 29(23):6983-8. PubMed ID: 23663172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-Heterocyclic carbene-mediated zwitterionic polymerization of N-substituted N-carboxyanhydrides toward poly(α-peptoid)s: kinetic, mechanism, and architectural control.
    Guo L; Lahasky SH; Ghale K; Zhang D
    J Am Chem Soc; 2012 Jun; 134(22):9163-71. PubMed ID: 22568497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Living polymerization of N-substituted β-alanine N-carboxyanhydrides: kinetic investigations and preparation of an amphiphilic block copoly-β-peptoid.
    Grossmann A; Luxenhofer R
    Macromol Rapid Commun; 2012 Oct; 33(19):1714-9. PubMed ID: 22760946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polypept(o)ides: Hybrid Systems Based on Polypeptides and Polypeptoids.
    Klinker K; Barz M
    Macromol Rapid Commun; 2015 Nov; 36(22):1943-57. PubMed ID: 26398770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying the Hydrolysis of Carbonyl Sulfide as a Side Reaction Impeding the Polymerization of N-Substituted Glycine N-Thiocarboxyanhydride.
    Zheng B; Bai T; Tao X; Schlaad H; Ling J
    Biomacromolecules; 2018 Nov; 19(11):4263-4269. PubMed ID: 30257089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Synthetic Intrinsically Disordered Polypeptides (IDPs): Controlled Incorporation of Glycine in the Ring-Opening Polymerization of
    Badreldin M; Salas-Ambrosio P; Bourasseau S; Lecommandoux S; Harrisson S; Bonduelle C
    Biomacromolecules; 2024 May; 25(5):3033-3043. PubMed ID: 38652289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(α-Peptoid)s Revisited: Synthesis, Properties, and Use as Biomaterial.
    Secker C; Brosnan SM; Luxenhofer R; Schlaad H
    Macromol Biosci; 2015 Jul; 15(7):881-91. PubMed ID: 25851782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAM-TMS Mechanism of α-Amino Acid N-Carboxyanhydride Polymerization: A DFT Study.
    Bai T; Ling J
    J Phys Chem A; 2017 Jun; 121(23):4588-4593. PubMed ID: 28524664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A versatile polypeptoid platform based on N-allyl glycine.
    Robinson JW; Schlaad H
    Chem Commun (Camb); 2012 Aug; 48(63):7835-7. PubMed ID: 22785559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptoids in Wonderland.
    Kirshenbaum K; Zuckermann RN
    Biopolymers; 2019 Apr; 110(4):e23279. PubMed ID: 31017667
    [No Abstract]   [Full Text] [Related]  

  • 15. Highly defined multiblock copolypeptoids: pushing the limits of living nucleophilic ring-opening polymerization.
    Fetsch C; Luxenhofer R
    Macromol Rapid Commun; 2012 Oct; 33(19):1708-13. PubMed ID: 22674859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding ring-closing and racemization to prepare α-amino acid NCA and NTA monomers: a DFT study.
    Bai T; Shen B; Cai D; Luo Y; Zhou P; Xia J; Zheng B; Zhang K; Xie R; Ni X; Xu M; Ling J; Sun J
    Phys Chem Chem Phys; 2020 Jul; 22(26):14868-14874. PubMed ID: 32582885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Facile Strategy for the Construction of Cyclic Peptoids under Microwave Irradiation through a Simple Substitution Reaction.
    Kaniraj PJ; Maayan G
    Org Lett; 2015 May; 17(9):2110-3. PubMed ID: 25868085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precision Synthesis of Polypeptides via Living Anionic Ring-Opening Polymerization of
    Lv W; Wang Y; Li M; Wang X; Tao Y
    J Am Chem Soc; 2022 Dec; 144(51):23622-23632. PubMed ID: 36533423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and living ring-opening polymerization of α-amino acid N-carboxyanhydrides triggered by an "alliance" of primary and secondary amines at room temperature.
    Zhao W; Gnanou Y; Hadjichristidis N
    Biomacromolecules; 2015 Apr; 16(4):1352-7. PubMed ID: 25761228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic Poly(α-peptoid)s by Lithium bis(trimethylsilyl)amide (LiHMDS)-Mediated Ring-Expansion Polymerization: Simple Access to Bioactive Backbones.
    Salas-Ambrosio P; Tronnet A; Since M; Bourgeade-Delmas S; Stigliani JL; Vax A; Lecommandoux S; Dupuy B; Verhaeghe P; Bonduelle C
    J Am Chem Soc; 2021 Mar; 143(10):3697-3702. PubMed ID: 33651603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.