BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30753071)

  • 1. Evolutionary Approach to Constructing a Deep Feedforward Neural Network for Prediction of Electronic Coupling Elements in Molecular Materials.
    Çaylak O; Yaman A; Baumeier B
    J Chem Theory Comput; 2019 Mar; 15(3):1777-1784. PubMed ID: 30753071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic properties of disordered organic semiconductors via QM/MM simulations.
    Difley S; Wang LP; Yeganeh S; Yost SR; Van Voorhis T
    Acc Chem Res; 2010 Jul; 43(7):995-1004. PubMed ID: 20443554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the DNA Conductance Using a Deep Feedforward Neural Network Model.
    Aggarwal A; Vinayak V; Bag S; Bhattacharyya C; Waghmare UV; Maiti PK
    J Chem Inf Model; 2021 Jan; 61(1):106-114. PubMed ID: 33320660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural network representation of electronic structure from ab initio molecular dynamics.
    Gu Q; Zhang L; Feng J
    Sci Bull (Beijing); 2022 Jan; 67(1):29-37. PubMed ID: 36545956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Artificial Neural Network Training Based on Response Surface Methodology for Membrane Flux Prediction.
    Ibrahim S; Abdul Wahab N
    Membranes (Basel); 2022 Jul; 12(8):. PubMed ID: 35893444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation.
    Cuny J; Xie Y; Pickard CJ; Hassanali AA
    J Chem Theory Comput; 2016 Feb; 12(2):765-73. PubMed ID: 26730889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate prediction of the blood-brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling.
    Hemmateenejad B; Miri R; Safarpour MA; Mehdipour AR
    J Comput Chem; 2006 Aug; 27(11):1125-35. PubMed ID: 16721721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling.
    Ludwig J; Vlachos DG
    J Chem Phys; 2007 Oct; 127(15):154716. PubMed ID: 17949200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust sequential learning of feedforward neural networks in the presence of heavy-tailed noise.
    Vuković N; Miljković Z
    Neural Netw; 2015 Mar; 63():31-47. PubMed ID: 25436486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab Initio Treatment of Disorder Effects in Amorphous Organic Materials: Toward Parameter Free Materials Simulation.
    Friederich P; Symalla F; Meded V; Neumann T; Wenzel W
    J Chem Theory Comput; 2014 Sep; 10(9):3720-5. PubMed ID: 26588517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BatTS: a hybrid method for optimizing deep feedforward neural network.
    Pan S; Gupta TK; Raza K
    PeerJ Comput Sci; 2023; 9():e1194. PubMed ID: 37346535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial neural networks for predicting charge transfer coupling.
    Wang CI; Joanito I; Lan CF; Hsu CP
    J Chem Phys; 2020 Dec; 153(21):214113. PubMed ID: 33291923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speeding up backpropagation using multiobjective evolutionary algorithms.
    Abbass HA
    Neural Comput; 2003 Nov; 15(11):2705-26. PubMed ID: 14577859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principle band structure calculations of tris(8-hydroxyquinolinato)aluminum.
    Yang Y; Geng H; Yin S; Shuai Z; Peng J
    J Phys Chem B; 2006 Feb; 110(7):3180-4. PubMed ID: 16494326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories.
    Teo TP; Ahmed SB; Kawalec P; Alayoubi N; Bruce N; Lyn E; Pistorius S
    Med Phys; 2018 Feb; 45(2):830-845. PubMed ID: 29244902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance analysis of a pipelined backpropagation parallel algorithm.
    Petrowski A; Dreyfus G; Girault C
    IEEE Trans Neural Netw; 1993; 4(6):970-81. PubMed ID: 18276527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanoelectric Response of Single-Crystal Rubrene from Ab Initio Molecular Dynamics.
    Elsner J; Giannini S; Blumberger J
    J Phys Chem Lett; 2021 Jul; 12(25):5857-5863. PubMed ID: 34139118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.