These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30753084)

  • 1. Isotope Effect in Bilayer WSe
    Wu W; Morales-Acosta MD; Wang Y; Pettes MT
    Nano Lett; 2019 Mar; 19(3):1527-1533. PubMed ID: 30753084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant Mechano-Optoelectronic Effect in an Atomically Thin Semiconductor.
    Wu W; Wang J; Ercius P; Wright NC; Leppert-Simenauer DM; Burke RA; Dubey M; Dogare AM; Pettes MT
    Nano Lett; 2018 Apr; 18(4):2351-2357. PubMed ID: 29558623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films.
    Zhang Y; Ugeda MM; Jin C; Shi SF; Bradley AJ; Martín-Recio A; Ryu H; Kim J; Tang S; Kim Y; Zhou B; Hwang C; Chen Y; Wang F; Crommie MF; Hussain Z; Shen ZX; Mo SK
    Nano Lett; 2016 Apr; 16(4):2485-91. PubMed ID: 26974978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton Formation Entropy Changes in Transition Metal Dichalcogenide Atomic Layers.
    Rice Q; Tabibi B; Seo FJ
    J Nanosci Nanotechnol; 2018 Mar; 18(3):2018-2020. PubMed ID: 29448703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tightly-bound trion and bandgap engineering via
    Wu X; Zheng X; Zhang G; Chen X; Ding J
    Nanotechnology; 2021 May; 32(30):. PubMed ID: 33857932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biexciton Formation in Bilayer Tungsten Disulfide.
    He Z; Xu W; Zhou Y; Wang X; Sheng Y; Rong Y; Guo S; Zhang J; Smith JM; Warner JH
    ACS Nano; 2016 Feb; 10(2):2176-83. PubMed ID: 26761127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Coherence in Atomic-Monolayer Transition-Metal Dichalcogenides Limited by Electron-Phonon Interactions.
    Dey P; Paul J; Wang Z; Stevens CE; Liu C; Romero AH; Shan J; Hilton DJ; Karaiskaj D
    Phys Rev Lett; 2016 Mar; 116(12):127402. PubMed ID: 27058100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides.
    Palummo M; Bernardi M; Grossman JC
    Nano Lett; 2015 May; 15(5):2794-800. PubMed ID: 25798735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of electronic structure as a function of layer thickness in group-VIB transition metal dichalcogenides: emergence of localization prototypes.
    Zhang L; Zunger A
    Nano Lett; 2015 Feb; 15(2):949-57. PubMed ID: 25562378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Anderson's rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures.
    Xu K; Xu Y; Zhang H; Peng B; Shao H; Ni G; Li J; Yao M; Lu H; Zhu H; Soukoulis CM
    Phys Chem Chem Phys; 2018 Dec; 20(48):30351-30364. PubMed ID: 30488929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides MX
    Jiang P; Qian X; Gu X; Yang R
    Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28727182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure, optical and photocatalytic performance of SiC-MX
    Din HU; Idrees M; Rehman G; Nguyen CV; Gan LY; Ahmad I; Maqbool M; Amin B
    Phys Chem Chem Phys; 2018 Oct; 20(37):24168-24175. PubMed ID: 30207335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys.
    Chen Y; Xi J; Dumcenco DO; Liu Z; Suenaga K; Wang D; Shuai Z; Huang YS; Xie L
    ACS Nano; 2013 May; 7(5):4610-6. PubMed ID: 23600688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bandgap Tunability of Transition Metal Dichalcogenide Atomic Layers.
    Rice Q; Tabibi B; Seo FJ
    J Nanosci Nanotechnol; 2018 Mar; 18(3):2175-2176. PubMed ID: 29448739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thickness dependence of spin polarization and electronic structure of ultra-thin films of MoS2 and related transition-metal dichalcogenides.
    Chang TR; Lin H; Jeng HT; Bansil A
    Sci Rep; 2014 Sep; 4():6270. PubMed ID: 25189645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layering effects on low frequency modes in n-layered MX2 transition metal dichalcogenides.
    Cammarata A; Polcar T
    Phys Chem Chem Phys; 2016 Feb; 18(6):4807-13. PubMed ID: 26806673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains.
    Johari P; Shenoy VB
    ACS Nano; 2012 Jun; 6(6):5449-56. PubMed ID: 22591011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.