These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30753183)

  • 1. Biophysical and structural characterization of a zinc-responsive repressor of the MarR superfamily.
    Varela PF; Velours C; Aumont-Niçaise M; Pineau B; Legrand P; Poquet I
    PLoS One; 2019; 14(2):e0210123. PubMed ID: 30753183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactococcus lactis ZitR is a zinc-responsive repressor active in the presence of low, nontoxic zinc concentrations in vivo.
    Llull D; Son O; Blanié S; Briffotaux J; Morello E; Rogniaux H; Danot O; Poquet I
    J Bacteriol; 2011 Apr; 193(8):1919-29. PubMed ID: 21317326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metalloregulatory zinc site in Streptococcus pneumoniae AdcR, a zinc-activated MarR family repressor.
    Reyes-Caballero H; Guerra AJ; Jacobsen FE; Kazmierczak KM; Cowart D; Koppolu UM; Scott RA; Winkler ME; Giedroc DP
    J Mol Biol; 2010 Oct; 403(2):197-216. PubMed ID: 20804771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the zinc-dependent MarR family transcriptional regulator AdcR in the Zn(II)-bound state.
    Guerra AJ; Dann CE; Giedroc DP
    J Am Chem Soc; 2011 Dec; 133(49):19614-7. PubMed ID: 22085181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New expression system tightly controlled by zinc availability in Lactococcus lactis.
    Llull D; Poquet I
    Appl Environ Microbiol; 2004 Sep; 70(9):5398-406. PubMed ID: 15345426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the transcription regulator CcpA from Lactococcus lactis.
    Loll B; Kowalczyk M; Alings C; Chieduch A; Bardowski J; Saenger W; Biesiadka J
    Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):431-6. PubMed ID: 17372346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 A resolution.
    Alekshun MN; Levy SB; Mealy TR; Seaton BA; Head JF
    Nat Struct Biol; 2001 Aug; 8(8):710-4. PubMed ID: 11473263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The copper-responsive repressor CopR of Lactococcus lactis is a 'winged helix' protein.
    Cantini F; Banci L; Solioz M
    Biochem J; 2009 Jan; 417(2):493-9. PubMed ID: 18837698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc-mediated conformational preselection mechanism in the allosteric control of DNA binding to the zinc transcriptional regulator (ZitR).
    He X; Ni D; Zhang H; Li X; Zhang J; Fu Q; Liu Y; Lu S
    Sci Rep; 2020 Aug; 10(1):13276. PubMed ID: 32764589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor.
    Ye J; Kandegedara A; Martin P; Rosen BP
    J Bacteriol; 2005 Jun; 187(12):4214-21. PubMed ID: 15937183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backbone and sterospecific methyl side chain resonance assignments of the homodimeric zinc sensor AdcR (32 kDa) in the apo- and Zn(II)-bound states.
    Guerra AJ; Giedroc DP
    Biomol NMR Assign; 2014 Apr; 8(1):11-4. PubMed ID: 23138857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of peroxide stress regulator from Streptococcus pyogenes provides functional insights into the mechanism of oxidative stress sensing.
    Makthal N; Rastegari S; Sanson M; Ma Z; Olsen RJ; Helmann JD; Musser JM; Kumaraswami M
    J Biol Chem; 2013 Jun; 288(25):18311-24. PubMed ID: 23645680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ferric uptake regulation (Fur) repressor is a zinc metalloprotein.
    Althaus EW; Outten CE; Olson KE; Cao H; O'Halloran TV
    Biochemistry; 1999 May; 38(20):6559-69. PubMed ID: 10350474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning site-specific dynamics to drive allosteric activation in a pneumococcal zinc uptake regulator.
    Capdevila DA; Huerta F; Edmonds KA; Le MT; Wu H; Giedroc DP
    Elife; 2018 Oct; 7():. PubMed ID: 30328810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insight on the mechanism of regulation of the MarR family of proteins: high-resolution crystal structure of a transcriptional repressor from Methanobacterium thermoautotrophicum.
    Saridakis V; Shahinas D; Xu X; Christendat D
    J Mol Biol; 2008 Mar; 377(3):655-67. PubMed ID: 18272181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ZnS(4) structural zinc site in the Helicobacter pylori ferric uptake regulator.
    Vitale S; Fauquant C; Lascoux D; Schauer K; Saint-Pierre C; Michaud-Soret I
    Biochemistry; 2009 Jun; 48(24):5582-91. PubMed ID: 19419176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The X-ray crystal structure of PA1374 from Pseudomonas aeruginosa, a putative oxidative-stress sensing transcriptional regulator.
    Kim H; Choe J
    Biochem Biophys Res Commun; 2013 Feb; 431(3):376-81. PubMed ID: 23337505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for the integration of environmental signals by FurB from
    Sein-Echaluce VC; Pallarés MC; Lostao A; Yruela I; Velázquez-Campoy A; Luisa Peleato M; Fillat MF
    Biochem J; 2018 Jan; 475(1):151-168. PubMed ID: 29203647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MarR family transcription factors: dynamic variations on a common scaffold.
    Deochand DK; Grove A
    Crit Rev Biochem Mol Biol; 2017 Dec; 52(6):595-613. PubMed ID: 28670937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferric uptake regulator protein: binding free energy calculations and per-residue free energy decomposition.
    Ahmad R; Brandsdal BO; Michaud-Soret I; Willassen NP
    Proteins; 2009 May; 75(2):373-86. PubMed ID: 18831042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.