BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30753203)

  • 1. Frequency-resolved analysis of coherent oscillations of local cerebral blood volume, measured with near-infrared spectroscopy, and systemic arterial pressure in healthy human subjects.
    Tgavalekos K; Pham T; Krishnamurthy N; Sassaroli A; Fantini S
    PLoS One; 2019; 14(2):e0211710. PubMed ID: 30753203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive Optical Measurements of Dynamic Cerebral Autoregulation by Inducing Oscillatory Cerebral Hemodynamics.
    Pham T; Fernandez C; Blaney G; Tgavalekos K; Sassaroli A; Cai X; Bibu S; Kornbluth J; Fantini S
    Front Neurol; 2021; 12():745987. PubMed ID: 34867729
    [No Abstract]   [Full Text] [Related]  

  • 3. Blood-pressure-induced oscillations of deoxy- and oxyhemoglobin concentrations are in-phase in the healthy breast and out-of-phase in the healthy brain.
    Tgavalekos KT; Kainerstorfer JM; Sassaroli A; Fantini S
    J Biomed Opt; 2016 Oct; 21(10):101410. PubMed ID: 27020418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depth dependence of coherent hemodynamics in the human head.
    Khaksari K; Blaney G; Sassaroli A; Krishnamurthy N; Pham T; Fantini S
    J Biomed Opt; 2018 Nov; 23(12):1-9. PubMed ID: 30444084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced speed of microvascular blood flow in hemodialysis patients versus healthy controls: a coherent hemodynamics spectroscopy study.
    Pierro ML; Kainerstorfer JM; Civiletto A; Weiner DE; Sassaroli A; Hallacoglu B; Fantini S
    J Biomed Opt; 2014 Feb; 19(2):026005. PubMed ID: 24522805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral autoregulation in the microvasculature measured with near-infrared spectroscopy.
    Kainerstorfer JM; Sassaroli A; Tgavalekos KT; Fantini S
    J Cereb Blood Flow Metab; 2015 Jun; 35(6):959-66. PubMed ID: 25669906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Practical steps for applying a new dynamic model to near-infrared spectroscopy measurements of hemodynamic oscillations and transient changes: implications for cerebrovascular and functional brain studies.
    Kainerstorfer JM; Sassaroli A; Hallacoglu B; Pierro ML; Fantini S
    Acad Radiol; 2014 Feb; 21(2):185-96. PubMed ID: 24439332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a stand-alone near-infrared spectroscopy system for monitoring cerebral autoregulation during cardiac surgery.
    Ono M; Zheng Y; Joshi B; Sigl JC; Hogue CW
    Anesth Analg; 2013 Jan; 116(1):198-204. PubMed ID: 23223100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelet coherence analysis of spontaneous oscillations in cerebral tissue oxyhemoglobin concentrations and arterial blood pressure in elderly subjects.
    Cui R; Zhang M; Li Z; Xin Q; Lu L; Zhou W; Han Q; Gao Y
    Microvasc Res; 2014 May; 93():14-20. PubMed ID: 24594440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-evolving coupling functions for evaluating the interaction between cerebral oxyhemoglobin and arterial blood pressure with hypertension.
    Li W; Zhang M; Huo C; Xu G; Chen W; Wang D; Li Z
    Med Phys; 2021 Apr; 48(4):2027-2037. PubMed ID: 33253413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Very-low-frequency oscillations of cerebral hemodynamics and blood pressure are affected by aging and cognitive load.
    Vermeij A; Meel-van den Abeelen AS; Kessels RP; van Beek AH; Claassen JA
    Neuroimage; 2014 Jan; 85 Pt 1():608-15. PubMed ID: 23660026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A continuous correlation between intracranial pressure and cerebral blood flow velocity reflects cerebral autoregulation impairment during intracranial pressure plateau waves.
    Lewis PM; Smielewski P; Rosenfeld JV; Pickard JD; Czosnyka M
    Neurocrit Care; 2014 Dec; 21(3):514-25. PubMed ID: 24865272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics.
    Cheng R; Shang Y; Hayes D; Saha SP; Yu G
    Neuroimage; 2012 Sep; 62(3):1445-54. PubMed ID: 22659481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent hemodynamics spectroscopy in a single step.
    Kainerstorfer JM; Sassaroli A; Fantini S
    Biomed Opt Express; 2014 Oct; 5(10):3403-16. PubMed ID: 25360359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral autoregulation in response to posture change in elderly subjects-assessment by wavelet phase coherence analysis of cerebral tissue oxyhemoglobin concentrations and arterial blood pressure signals.
    Gao Y; Zhang M; Han Q; Li W; Xin Q; Wang Y; Li Z
    Behav Brain Res; 2015 Feb; 278():330-6. PubMed ID: 25453742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of dim light at night on cerebral hemodynamic oscillations during sleep: A near-infrared spectroscopy study.
    Kim TJ; Lee BU; Sunwoo JS; Byun JI; Moon J; Lee ST; Jung KH; Chu K; Kim M; Lim JM; Lee E; Lee SK; Jung KY
    Chronobiol Int; 2017; 34(10):1325-1338. PubMed ID: 29064336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative measurements of cerebral blood flow with near-infrared spectroscopy.
    Pham T; Tgavalekos K; Sassaroli A; Blaney G; Fantini S
    Biomed Opt Express; 2019 Apr; 10(4):2117-2134. PubMed ID: 31061774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive Monitoring of Dynamic Cerebrovascular Autoregulation and 'Optimal Blood Pressure' in Normal Adult Subjects.
    Pham P; Bindra J; Aneman A; Chuan A; Worthington JM; Jaeger M
    Neurocrit Care; 2019 Feb; 30(1):201-206. PubMed ID: 30191449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring cerebral autoregulation after brain injury: multimodal assessment of cerebral slow-wave oscillations using near-infrared spectroscopy.
    Highton D; Ghosh A; Tachtsidis I; Panovska-Griffiths J; Elwell CE; Smith M
    Anesth Analg; 2015 Jul; 121(1):198-205. PubMed ID: 25993387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inconsistent detection of changes in cerebral blood volume by near infrared spectroscopy in standard clinical tests.
    Canova D; Roatta S; Bosone D; Micieli G
    J Appl Physiol (1985); 2011 Jun; 110(6):1646-55. PubMed ID: 21474700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.