These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 30753844)

  • 1. Biotransformation into 11α-hydroxyprogesterone glucosides by glucosyltransferase.
    Yamaguchi T; Lee JH; Lim AR; Yu EJ; Oh TJ
    Steroids; 2019 May; 145():32-38. PubMed ID: 30753844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioconversion of Corticosterone into Corticosterone-Glucoside by Glucosyltransferase.
    Yamaguchi T; Lee JH; Lim AR; Sim JS; Yu EJ; Oh TJ
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30029555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient biotransformation of progesterone into 11α-hydroxyprogesterone by Rhizopus microsporus var. oligosporus.
    Nickavar B; Vahidi H; Eslami M
    Z Naturforsch C J Biosci; 2018 Dec; 74(1-2):9-15. PubMed ID: 30367812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic Synthesis of Anabolic Steroid Glycosides by Glucosyltransferase from
    Yu EJ; Yamaguchi T; Lee JH; Lim AR; Lee JH; Park H; Oh TJ
    J Microbiol Biotechnol; 2020 Apr; 30(4):604-614. PubMed ID: 31893610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 11α-Hydroxyprogesterone, a potent 11β-hydroxysteroid dehydrogenase inhibitor, is metabolised by steroid-5α-reductase and cytochrome P450 17α-hydroxylase/17,20-lyase to produce C11α-derivatives of 21-deoxycortisol and 11-hydroxyandrostenedione in vitro.
    Gent R; du Toit T; Swart AC
    J Steroid Biochem Mol Biol; 2019 Jul; 191():105369. PubMed ID: 31039398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13.
    Gurung RB; Kim EH; Oh TJ; Sohng JK
    Mol Cells; 2013 Oct; 36(4):355-61. PubMed ID: 24170092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening for strains with 11α-hydroxylase activity for 17α-hydroxy progesterone biotransformation.
    Gao Q; Qiao Y; Shen Y; Wang M; Wang X; Liu Y
    Steroids; 2017 Aug; 124():67-71. PubMed ID: 28533033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-production of 11α-hydroxyprogesterone and ethanol using recombinant yeast expressing fungal steroid hydroxylases.
    Hull CM; Warrilow AGS; Rolley NJ; Price CL; Donnison IS; Kelly DE; Kelly SL
    Biotechnol Biofuels; 2017; 10():226. PubMed ID: 29021826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of 1α,11α-dihydroxyisopimara-8(14),15-diene by Cunninghamella echinulata NRRL 1386 and their neuroprotective activity.
    Chokchaisiri R; Chaichompoo W; Pabuprapap W; Sukcharoen O; Tocharus J; Ganranoo L; Bureekaew S; Sangvichien E; Suksamrarn A
    Bioorg Chem; 2021 May; 110():104799. PubMed ID: 33730671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxylation of progesterone by some Trichoderma species.
    El-Kadi IA; Mostafa ME
    Folia Microbiol (Praha); 2004; 49(3):285-90. PubMed ID: 15259769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Resveratrol Glycosides by Plant Glucosyltransferase and Cyclodextrin Glucanotransferase and Their Neuroprotective Activity.
    Shimoda K; Kubota N; Hamada H; Hamada H
    Nat Prod Commun; 2015 Jun; 10(6):995-6. PubMed ID: 26197534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a UDP-Glucosyltransferase favouring substrate- and regio-specific biosynthesis of flavonoid glucosides in Cyclocarya paliurus.
    Li J; Liu X; Gao Y; Zong G; Wang D; Liu M; Fei S; Wei Y; Yin Z; Chen J; Wang X; Shen Y
    Phytochemistry; 2019 Jul; 163():75-88. PubMed ID: 31030081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificity of a particulate glucosyltransferase in seedlings of Pisum sativum L. which catalyzes the formation of 5'-O-(beta-D-glucopyranosyl)pyridoxine.
    Tadera K; Yagi F; Kobayashi A
    J Nutr Sci Vitaminol (Tokyo); 1982; 28(4):359-66. PubMed ID: 6217302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel biotechnological glucosylation of high-impact aroma chemicals, 3(2H)- and 2(5H)-furanones.
    Effenberger I; Hoffmann T; Jonczyk R; Schwab W
    Sci Rep; 2019 Jul; 9(1):10943. PubMed ID: 31358872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four new iridoid glucosides containing the furan ring from the fruit of Cornus officinalis.
    He J; Ye XS; Wang XX; Yang YN; Zhang PC; Ma BZ; Zhang WK; Xu JK
    Fitoterapia; 2017 Jul; 120():136-141. PubMed ID: 28596026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural determination of kochiosides A-C, new steroidal glucosides from Kochia prostrata, by 1D and 2D NMR spectroscopy.
    Imran M; Ahmed E; Malik A
    Magn Reson Chem; 2007 Sep; 45(9):785-8. PubMed ID: 17640023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural cell protective compounds isolated from Phoenix hanceana var. formosana.
    Lin YP; Chen TY; Tseng HW; Lee MH; Chen ST
    Phytochemistry; 2009 Jun; 70(9):1173-1181. PubMed ID: 19628235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into glucocorticoids glucosylation by glucosyltransferase: A combined experimental and in-silico approach.
    Subedi P; Kim MS; Lee JH; Park JK; Oh TJ
    Biophys Chem; 2022 Oct; 289():106875. PubMed ID: 35987098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioconversion of rebaudioside I from rebaudioside A.
    Prakash I; Bunders C; Devkota KP; Charan RD; Ramirez C; Snyder TM; Priedemann C; Markosyan A; Jarrin C; Halle RT
    Molecules; 2014 Oct; 19(11):17345-55. PubMed ID: 25353385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of progesterone by Aspergillus nidulans VKPM F-1069 (wild type).
    Savinova OS; Solyev PN; Vasina DV; Tyazhelova TV; Fedorova TV; Savinova TS
    Steroids; 2019 Sep; 149():108421. PubMed ID: 31176657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.