These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 30753927)

  • 1. Improved state change estimation in dynamic functional connectivity using hidden semi-Markov models.
    Shappell H; Caffo BS; Pekar JJ; Lindquist MA
    Neuroimage; 2019 May; 191():243-257. PubMed ID: 30753927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
    Taghia J; Ryali S; Chen T; Supekar K; Cai W; Menon V
    Neuroimage; 2017 Jul; 155():271-290. PubMed ID: 28267626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpreting temporal fluctuations in resting-state functional connectivity MRI.
    Liégeois R; Laumann TO; Snyder AZ; Zhou J; Yeo BTT
    Neuroimage; 2017 Dec; 163():437-455. PubMed ID: 28916180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal Modeling of Brain Dynamics Using Resting-State Functional Magnetic Resonance Imaging with Gaussian Hidden Markov Model.
    Chen S; Langley J; Chen X; Hu X
    Brain Connect; 2016 May; 6(4):326-34. PubMed ID: 27008543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for sparse dynamic functional connectivity analysis from resting-state fMRI.
    Wang H; Chen J; Yuan Z; Huang Y; Lin F
    J Neurosci Methods; 2024 Nov; 411():110275. PubMed ID: 39241968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependence of graph theory metrics in functional connectivity analysis.
    Chiang S; Cassese A; Guindani M; Vannucci M; Yeh HJ; Haneef Z; Stern JM
    Neuroimage; 2016 Jan; 125():601-615. PubMed ID: 26518632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Children with attention-deficit/hyperactivity disorder spend more time in hyperconnected network states and less time in segregated network states as revealed by dynamic connectivity analysis.
    Shappell HM; Duffy KA; Rosch KS; Pekar JJ; Mostofsky SH; Lindquist MA; Cohen JR
    Neuroimage; 2021 Apr; 229():117753. PubMed ID: 33454408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A predictor-informed multi-subject bayesian approach for dynamic functional connectivity.
    Lee J; Hussain S; Warnick R; Vannucci M; Menchaca I; Seitz AR; Hu X; Peters MAK; Guindani M
    PLoS One; 2024; 19(5):e0298651. PubMed ID: 38753655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse Graphical Models for Functional Connectivity Networks: Best Methods and the Autocorrelation Issue.
    Zhu Y; Cribben I
    Brain Connect; 2018 Apr; 8(3):139-165. PubMed ID: 29634321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models.
    Ting CM; Ombao H; Samdin SB; Salleh SH
    IEEE Trans Med Imaging; 2018 Apr; 37(4):1011-1023. PubMed ID: 29610078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic effective connectivity in resting state fMRI.
    Park HJ; Friston KJ; Pae C; Park B; Razi A
    Neuroimage; 2018 Oct; 180(Pt B):594-608. PubMed ID: 29158202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Hidden Markov Approach to Studying Dynamic Functional Connectivity States in Human Neuroimaging.
    Hussain S; Langley J; Seitz AR; Hu XP; Peters MAK
    Brain Connect; 2023 Apr; 13(3):154-163. PubMed ID: 36367193
    [No Abstract]   [Full Text] [Related]  

  • 13. Predictive assessment of models for dynamic functional connectivity.
    Nielsen SFV; Schmidt MN; Madsen KH; Mørup M
    Neuroimage; 2018 May; 171():116-134. PubMed ID: 29292135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic mode decomposition of resting-state and task fMRI.
    Casorso J; Kong X; Chi W; Van De Ville D; Yeo BTT; Liégeois R
    Neuroimage; 2019 Jul; 194():42-54. PubMed ID: 30904469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Test-retest reliability of dynamic functional connectivity in resting state fMRI.
    Zhang C; Baum SA; Adduru VR; Biswal BB; Michael AM
    Neuroimage; 2018 Dec; 183():907-918. PubMed ID: 30120987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling whole-brain dynamics in normal aging through Hidden Markov Models.
    Moretto M; Silvestri E; Zangrossi A; Corbetta M; Bertoldo A
    Hum Brain Mapp; 2022 Feb; 43(3):1129-1144. PubMed ID: 34783122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing and Differentiating Brain State Dynamics via Hidden Markov Models.
    Ou J; Xie L; Jin C; Li X; Zhu D; Jiang R; Chen Y; Zhang J; Li L; Liu T
    Brain Topogr; 2015 Sep; 28(5):666-679. PubMed ID: 25331991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resting state dynamics meets anatomical structure: Temporal multiple kernel learning (tMKL) model.
    Surampudi SG; Misra J; Deco G; Bapi RS; Sharma A; Roy D
    Neuroimage; 2019 Jan; 184():609-620. PubMed ID: 30267857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.
    Suk HI; Wee CY; Lee SW; Shen D
    Neuroimage; 2016 Apr; 129():292-307. PubMed ID: 26774612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic functional connectivity using state-based dynamic community structure: method and application to opioid analgesia.
    Robinson LF; Atlas LY; Wager TD
    Neuroimage; 2015 Mar; 108():274-91. PubMed ID: 25534114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.