These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30753951)
21. Developing Clinical Prediction Models Using Primary Care Electronic Health Record Data: The Impact of Data Preparation Choices on Model Performance. van Os HJA; Kanning JP; Wermer MJH; Chavannes NH; Numans ME; Ruigrok YM; van Zwet EW; Putter H; Steyerberg EW; Groenwold RHH Front Epidemiol; 2022; 2():871630. PubMed ID: 38455328 [TBL] [Abstract][Full Text] [Related]
22. Using electronic health records and claims data to identify high-risk patients likely to benefit from palliative care. Guo A; Foraker R; White P; Chivers C; Courtright K; Moore N Am J Manag Care; 2021 Jan; 27(1):e7-e15. PubMed ID: 33471463 [TBL] [Abstract][Full Text] [Related]
23. Development of an automated phenotyping algorithm for hepatorenal syndrome. Koola JD; Davis SE; Al-Nimri O; Parr SK; Fabbri D; Malin BA; Ho SB; Matheny ME J Biomed Inform; 2018 Apr; 80():87-95. PubMed ID: 29530803 [TBL] [Abstract][Full Text] [Related]
24. The impact of electronic health record discontinuity on prediction modeling. Kar S; Bessette LG; Wyss R; Kesselheim AS; Lin KJ PLoS One; 2023; 18(7):e0287985. PubMed ID: 37410777 [TBL] [Abstract][Full Text] [Related]
25. Value of Neighborhood Socioeconomic Status in Predicting Risk of Outcomes in Studies That Use Electronic Health Record Data. Bhavsar NA; Gao A; Phelan M; Pagidipati NJ; Goldstein BA JAMA Netw Open; 2018 Sep; 1(5):e182716. PubMed ID: 30646172 [TBL] [Abstract][Full Text] [Related]
26. Automated Survival Prediction in Metastatic Cancer Patients Using High-Dimensional Electronic Medical Record Data. Gensheimer MF; Henry AS; Wood DJ; Hastie TJ; Aggarwal S; Dudley SA; Pradhan P; Banerjee I; Cho E; Ramchandran K; Pollom E; Koong AC; Rubin DL; Chang DT J Natl Cancer Inst; 2019 Jun; 111(6):568-574. PubMed ID: 30346554 [TBL] [Abstract][Full Text] [Related]
27. Inequity in palliative care service full utilisation among patients with advanced cancer: a retrospective Cohort study. D'Angelo D; Di Nitto M; Giannarelli D; Croci I; Latina R; Marchetti A; Magnani C; Mastroianni C; Piredda M; Artico M; De Marinis MG Acta Oncol; 2020 Jun; 59(6):620-627. PubMed ID: 32148138 [No Abstract] [Full Text] [Related]
28. Illustrating the patient journey through the care continuum: Leveraging structured primary care electronic medical record (EMR) data in Ontario, Canada using chronic obstructive pulmonary disease as a case study. Rayner J; Khan T; Chan C; Wu C Int J Med Inform; 2020 Aug; 140():104159. PubMed ID: 32473567 [TBL] [Abstract][Full Text] [Related]
29. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Seymour CW; Liu VX; Iwashyna TJ; Brunkhorst FM; Rea TD; Scherag A; Rubenfeld G; Kahn JM; Shankar-Hari M; Singer M; Deutschman CS; Escobar GJ; Angus DC JAMA; 2016 Feb; 315(8):762-74. PubMed ID: 26903335 [TBL] [Abstract][Full Text] [Related]
30. Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records. Vagliano I; Schut MC; Abu-Hanna A; Dongelmans DA; de Lange DW; Gommers D; Cremer OL; Bosman RJ; Rigter S; Wils EJ; Frenzel T; de Jong R; Peters MAA; Kamps MJA; Ramnarain D; Nowitzky R; Nooteboom FGCA; de Ruijter W; Urlings-Strop LC; Smit EGM; Mehagnoul-Schipper DJ; Dormans T; de Jager CPC; Hendriks SHA; Achterberg S; Oostdijk E; Reidinga AC; Festen-Spanjer B; Brunnekreef GB; Cornet AD; van den Tempel W; Boelens AD; Koetsier P; Lens J; Faber HJ; Karakus A; Entjes R; de Jong P; Rettig TCD; Reuland MC; Arbous S; Fleuren LM; Dam TA; Thoral PJ; Lalisang RCA; Tonutti M; de Bruin DP; Elbers PWG; de Keizer NF; Int J Med Inform; 2022 Nov; 167():104863. PubMed ID: 36162166 [TBL] [Abstract][Full Text] [Related]
31. Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record. Wei WQ; Bastarache LA; Carroll RJ; Marlo JE; Osterman TJ; Gamazon ER; Cox NJ; Roden DM; Denny JC PLoS One; 2017; 12(7):e0175508. PubMed ID: 28686612 [TBL] [Abstract][Full Text] [Related]
32. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning]. Lin Y; Wu JY; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862 [TBL] [Abstract][Full Text] [Related]
33. SCOPE: predicting future diagnoses in office visits using electronic health records. Mukherjee P; Humbert-Droz M; Chen JH; Gevaert O Sci Rep; 2023 Jul; 13(1):11005. PubMed ID: 37419945 [TBL] [Abstract][Full Text] [Related]
34. Potential application of item-response theory to interpretation of medical codes in electronic patient records. Dregan A; Grieve A; van Staa T; Gulliford MC; BMC Med Res Methodol; 2011 Dec; 11():168. PubMed ID: 22176509 [TBL] [Abstract][Full Text] [Related]
35. An Artificial Intelligence Model for Predicting Trauma Mortality Among Emergency Department Patients in South Korea: Retrospective Cohort Study. Lee S; Kang WS; Kim DW; Seo SH; Kim J; Jeong ST; Yon DK; Lee J J Med Internet Res; 2023 Aug; 25():e49283. PubMed ID: 37642984 [TBL] [Abstract][Full Text] [Related]
36. Adult patient access to electronic health records. Ammenwerth E; Neyer S; Hörbst A; Mueller G; Siebert U; Schnell-Inderst P Cochrane Database Syst Rev; 2021 Feb; 2(2):CD012707. PubMed ID: 33634854 [TBL] [Abstract][Full Text] [Related]
37. Validation of the ICD-9 Diagnostic Code for Palliative Care in Patients Hospitalized With Heart Failure Within the Veterans Health Administration. Feder SL; Redeker NS; Jeon S; Schulman-Green D; Womack JA; Tate JP; Bedimo RJ; Budoff MJ; Butt AA; Crothers K; Akgün KM Am J Hosp Palliat Care; 2018 Jul; 35(7):959-965. PubMed ID: 29254358 [TBL] [Abstract][Full Text] [Related]
38. Early Detection of Heart Failure Using Electronic Health Records: Practical Implications for Time Before Diagnosis, Data Diversity, Data Quantity, and Data Density. Ng K; Steinhubl SR; deFilippi C; Dey S; Stewart WF Circ Cardiovasc Qual Outcomes; 2016 Nov; 9(6):649-658. PubMed ID: 28263940 [TBL] [Abstract][Full Text] [Related]
39. Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data. Marafino BJ; Park M; Davies JM; Thombley R; Luft HS; Sing DC; Kazi DS; DeJong C; Boscardin WJ; Dean ML; Dudley RA JAMA Netw Open; 2018 Dec; 1(8):e185097. PubMed ID: 30646310 [TBL] [Abstract][Full Text] [Related]