These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3075439)

  • 1. Antibacterial action of 2-bromo-2-nitropropane-1,3-diol (bronopol).
    Shepherd JA; Waigh RD; Gilbert P
    Antimicrob Agents Chemother; 1988 Nov; 32(11):1693-8. PubMed ID: 3075439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathways of peroxynitrite oxidation of thiol groups.
    Quijano C; Alvarez B; Gatti RM; Augusto O; Radi R
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):167-73. PubMed ID: 9078258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for chemical and cellular reactivities of the formaldehyde releaser bronopol, independent of formaldehyde release.
    Kireche M; Peiffer JL; Antonios D; Fabre I; Giménez-Arnau E; Pallardy M; Lepoittevin JP; Ourlin JC
    Chem Res Toxicol; 2011 Dec; 24(12):2115-28. PubMed ID: 22034943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiols as myeloperoxidase-oxidase substrates.
    Svensson BE
    Biochem J; 1988 Jul; 253(2):441-9. PubMed ID: 2845919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing the oxidation of cysteamine and other thiols: implications for hyperthermic sensitization and radiation protection.
    Biaglow JE; Issels RW; Gerweck LE; Varnes ME; Jacobson B; Mitchell JB; Russo A
    Radiat Res; 1984 Nov; 100(2):298-312. PubMed ID: 6093188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some aspects of the mode of action of the antibacterial compound bronopol (2-bromo-2-nitropropan-1,3-diol).
    Stretton RJ; Manson TW
    J Appl Bacteriol; 1973 Mar; 36(1):61-76. PubMed ID: 4197980
    [No Abstract]   [Full Text] [Related]  

  • 7. The metabolism of the antibacterial agent bronopol (2-bromo-2-nitropropane-1,3-diol) given orally to rats and dogs.
    Moore DH; Chasseaud LF; Lewis JD; Risdall PC; Crampton EL
    Food Cosmet Toxicol; 1976 Jun; 14(3):183-7. PubMed ID: 950211
    [No Abstract]   [Full Text] [Related]  

  • 8. Bronopol allergic contact dermatitis.
    Peters MS; Connolly SM; Schroeter AL
    Contact Dermatitis; 1983 Sep; 9(5):397-401. PubMed ID: 6627926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms.
    Heinecke JW; Kawamura M; Suzuki L; Chait A
    J Lipid Res; 1993 Dec; 34(12):2051-61. PubMed ID: 8301226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of bronopol and its degradation products by HPLC.
    Wang H; Provan GJ; Helliwell K
    J Pharm Biomed Anal; 2002 Jun; 29(1-2):387-92. PubMed ID: 12062701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode of action of the antimicrobial compound 5-bromo-5-nitro-1,3-dioxane (bronidox).
    Ghannoum M; Thomson M; Bowman W; Al-Khalil S
    Folia Microbiol (Praha); 1986; 31(1):19-31. PubMed ID: 3082729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First insights into oxidative stress and theoretical environmental risk of Bronopol and Detarox® AP, two biocides claimed to be ecofriendly for a sustainable aquaculture.
    Magara G; Sangsawang A; Pastorino P; Bellezza Oddon S; Caldaroni B; Menconi V; Kovitvadhi U; Gasco L; Meloni D; Dörr AJM; Prearo M; Federici E; Elia AC
    Sci Total Environ; 2021 Jul; 778():146375. PubMed ID: 34030372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Distribution and metabolism of 2-bromo-2-nitropropane-1,3-diol (bronopol)].
    Kujawa M; Macholz R; Seidler H; Härtig M; Lewerenz HJ; Schnaak W; Zydek G
    Z Gesamte Hyg; 1987 Jan; 33(1):27-9. PubMed ID: 3590870
    [No Abstract]   [Full Text] [Related]  

  • 14. The impact of the various chemical and physical factors on the degradation rate of bronopol.
    Matczuk M; Obarski N; Mojski M
    Int J Cosmet Sci; 2012 Oct; 34(5):451-7. PubMed ID: 22612984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermediates in the aerobic autoxidation of 6-hydroxydopamine: relative importance under different reaction conditions.
    Gee P; Davison AJ
    Free Radic Biol Med; 1989; 6(3):271-84. PubMed ID: 2545550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol oxidase activity of copper, zinc superoxide dismutase.
    Winterbourn CC; Peskin AV; Parsons-Mair HN
    J Biol Chem; 2002 Jan; 277(3):1906-11. PubMed ID: 11698397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reactivity of thiols and disulfides with different redox states of myoglobin. Redox and addition reactions and formation of thiyl radical intermediates.
    Romero FJ; Ordoñez I; Arduini A; Cadenas E
    J Biol Chem; 1992 Jan; 267(3):1680-8. PubMed ID: 1309791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol-mediated disassembly and reassembly of [2Fe-2S] clusters in the redox-regulated transcription factor SoxR.
    Ding H; Demple B
    Biochemistry; 1998 Dec; 37(49):17280-6. PubMed ID: 9860842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide.
    Winterbourn CC; Metodiewa D
    Free Radic Biol Med; 1999 Aug; 27(3-4):322-8. PubMed ID: 10468205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of copper-catalyzed autoxidation of cysteine.
    Kachur AV; Koch CJ; Biaglow JE
    Free Radic Res; 1999 Jul; 31(1):23-34. PubMed ID: 10489117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.