BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 3075450)

  • 1. The bacteria responsible for ureolysis in artificial dental plaque.
    Sissons CH; Hancock EM; Perinpanayagam HE; Cutress TW
    Arch Oral Biol; 1988; 33(10):727-33. PubMed ID: 3075450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The source of variation in ureolysis in artificial plaques cultured from human salivary bacteria.
    Sissons CH; Hancock EM; Cutress TW
    Arch Oral Biol; 1988; 33(10):721-6. PubMed ID: 3075449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophoretic analysis of ureases in Streptococcus salivarius and in saliva.
    Sissons CH; Loong PC; Hancock EM; Cutress TW
    Oral Microbiol Immunol; 1989 Dec; 4(4):211-8. PubMed ID: 2640315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and product stoichiometry of ureolysis by human salivary bacteria and artificial mouth plaques.
    Sissons CH; Cutress TW; Pearce EI
    Arch Oral Biol; 1985; 30(11-12):781-90. PubMed ID: 3938657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urease activity in Streptococcus salivarius at low pH.
    Sissons CH; Hancock EM
    Arch Oral Biol; 1993 Jun; 38(6):507-16. PubMed ID: 8343073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of inhibition by fluoride of urease activities of cell suspensions and biofilms of Staphylococcus epidermidis, Streptococcus salivarius, Actinomyces naeslundii and of dental plaque.
    Barboza-Silva E; Castro AC; Marquis RE
    Oral Microbiol Immunol; 2005 Dec; 20(6):323-32. PubMed ID: 16238590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ureolytic microflora of immature dental plaque before and after rinsing with a urea-based mineralizing solution.
    Gallagher IH; Pearce EI; Hancock EM
    J Dent Res; 1984 Aug; 63(8):1037-9. PubMed ID: 6589262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus.
    Chen YY; Clancy KA; Burne RA
    Infect Immun; 1996 Feb; 64(2):585-92. PubMed ID: 8550211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginolytic and ureolytic activities of pure cultures of human oral bacteria and their effects on the pH response of salivary sediment and dental plaque in vitro.
    Wijeyeweera RL; Kleinberg I
    Arch Oral Biol; 1989; 34(1):43-53. PubMed ID: 2675800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid urease test (RUT) for evaluation of urease activity in oral bacteria in vitro and in supragingival dental plaque ex vivo.
    Dahlén G; Hassan H; Blomqvist S; Carlén A
    BMC Oral Health; 2018 May; 18(1):89. PubMed ID: 29776416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of recombinant, ureolytic Streptococcus mutans demonstrates an inverse relationship between dental plaque ureolytic capacity and cariogenicity.
    Clancy KA; Pearson S; Bowen WH; Burne RA
    Infect Immun; 2000 May; 68(5):2621-9. PubMed ID: 10768953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro urea-dependent pH-changes by human salivary bacteria and dispersed, artificial-mouth, bacterial plaques.
    Sissons CH; Cutress TW
    Arch Oral Biol; 1987; 32(3):181-9. PubMed ID: 3478020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and characterization of a recombinant ureolytic Streptococcus mutans and its use to demonstrate the relationship of urease activity to pH modulating capacity.
    Clancy A; Burne RA
    FEMS Microbiol Lett; 1997 Jun; 151(2):205-11. PubMed ID: 9228755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urea concentration in minor mucous gland secretions and the effect of salivary film velocity on urea metabolism by Streptococcus vestibularis in an artificial plaque.
    Macpherson LM; Dawes C
    J Periodontal Res; 1991 Sep; 26(5):395-401. PubMed ID: 1832451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional gene-guided enrichment plus in situ microsphere cultivation enables isolation of new crucial ureolytic bacteria from the rumen of cattle.
    Liu S; Yu Z; Zhong H; Zheng N; Huws S; Wang J; Zhao S
    Microbiome; 2023 Apr; 11(1):76. PubMed ID: 37060083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification.
    Omoregie AI; Ong DEL; Nissom PM
    Lett Appl Microbiol; 2019 Feb; 68(2):173-181. PubMed ID: 30537001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incidence of selected ureolytic bacteria in human dental plaque from sites with differing salivary access.
    Salako NO; Kleinberg I
    Arch Oral Biol; 1989; 34(10):787-91. PubMed ID: 2610614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the effects of galactose and glucose on the pH responses of human dental plaque, salivary sediment and pure cultures of oral bacteria.
    Salako NO; Kleinberg I
    Arch Oral Biol; 1992 Oct; 37(10):821-9. PubMed ID: 1444892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-station dental plaque microcosm (artificial mouth) for the study of plaque growth, metabolism, pH, and mineralization.
    Sissons CH; Cutress TW; Hoffman MP; Wakefield JS
    J Dent Res; 1991 Nov; 70(11):1409-16. PubMed ID: 1960250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteria in human mouths involved in the production and utilization of hydrogen peroxide.
    Ryan CS; Kleinberg I
    Arch Oral Biol; 1995 Aug; 40(8):753-63. PubMed ID: 7487577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.