These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 30754589)
1. Appearance of Powdery Mildew of Wheat Caused by Blumeria graminis f. sp. tritici on Pm17-Bearing Cultivars in North Carolina. Cowger C; Parks R; Marshall D Plant Dis; 2009 Nov; 93(11):1219. PubMed ID: 30754589 [TBL] [Abstract][Full Text] [Related]
2. Virulence Differences in Blumeria graminis f. sp. tritici from the Central and Eastern United States. Cowger C; Mehra L; Arellano C; Meyers E; Murphy JP Phytopathology; 2018 Mar; 108(3):402-411. PubMed ID: 29082810 [TBL] [Abstract][Full Text] [Related]
3. Virulence of Egyptian Blumeria graminis f. sp. tritici Population and Response of Egyptian Wheat Cultivars. Abdelrhim A; Abd-Alla HM; Abdou ES; Ismail ME; Cowger C Plant Dis; 2018 Feb; 102(2):391-397. PubMed ID: 30673514 [TBL] [Abstract][Full Text] [Related]
4. Virulence Analysis of Wheat Powdery Mildew (Blumeria graminis f. sp. tritici) and Effective Genes in Middle Delta, Egypt. El-Shamy MM; Emara HM; Mohamed ME Plant Dis; 2016 Sep; 100(9):1927-1930. PubMed ID: 30682990 [TBL] [Abstract][Full Text] [Related]
5. Virulence of Blumeria graminis f. sp. tritici Populations in Morocco. Imani Y; Ouassou A; Griffey CA Plant Dis; 2002 Apr; 86(4):383-388. PubMed ID: 30818712 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Singh SP; Hurni S; Ruinelli M; Brunner S; Sanchez-Martin J; Krukowski P; Peditto D; Buchmann G; Zbinden H; Keller B Plant Mol Biol; 2018 Oct; 98(3):249-260. PubMed ID: 30244408 [TBL] [Abstract][Full Text] [Related]
7. Pyramiding of transgenic immune receptors from primary and tertiary wheat gene pools improves powdery mildew resistance in the field. Koller T; Camenzind M; Jung E; Brunner S; Herren G; Armbruster C; Keller B J Exp Bot; 2024 Mar; 75(7):1872-1886. PubMed ID: 38071644 [TBL] [Abstract][Full Text] [Related]
8. Identification of physiological races of Blumeria graminis f. sp. tritici and evaluation of powdery mildew resistance in wheat cultivars in Sistan province, Iran. Salari M; Okhovat SM; Sharifi-Tehrani A; Hedjaroude GA; Zad SJ; Mohammadi M Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):549-53. PubMed ID: 15151289 [TBL] [Abstract][Full Text] [Related]
9. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. Mustafa G; Randoux B; Tisserant B; Fontaine J; Magnin-Robert M; Lounès-Hadj Sahraoui A; Reignault P Mycorrhiza; 2016 Oct; 26(7):685-97. PubMed ID: 27130314 [TBL] [Abstract][Full Text] [Related]
10. Ancient variation of the Müller MC; Kunz L; Schudel S; Lawson AW; Kammerecker S; Isaksson J; Wyler M; Graf J; Sotiropoulos AG; Praz CR; Manser B; Wicker T; Bourras S; Keller B Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2108808119. PubMed ID: 35857869 [TBL] [Abstract][Full Text] [Related]
11. Powdery Mildew Outbreaks caused by Podosphaera macularis on Hop Cultivars Possessing the Resistance Gene R6 in the Pacific Northwestern United States. Wolfenbarger SN; Eck EB; Ocamb CM; Probst C; Nelson ME; Grove GG; Gent DH Plant Dis; 2014 Jun; 98(6):852. PubMed ID: 30708655 [TBL] [Abstract][Full Text] [Related]
12. Identification of Resistant Germplasm and Detection of Genes for Resistance to Powdery Mildew and Leaf Rust from 2,978 Wheat Accessions. Jin Y; Shi F; Liu W; Fu X; Gu T; Han G; Shi Z; Sheng Y; Xu H; Li L; An D Plant Dis; 2021 Dec; 105(12):3900-3908. PubMed ID: 34129353 [TBL] [Abstract][Full Text] [Related]
13. Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew. An D; Zheng Q; Zhou Y; Ma P; Lv Z; Li L; Li B; Luo Q; Xu H; Xu Y Chromosome Res; 2013 Jul; 21(4):419-32. PubMed ID: 23836161 [TBL] [Abstract][Full Text] [Related]
14. Molecular cytogenetic identification of a novel 1AL.1RS translocation line with powdery mildew resistance. Lu M; Wang L; Zhang J; Sun S; Li Y; Du W; Wu J; Zhao J; Yang Q; Chen X Genet Mol Res; 2014 Dec; 13(4):10678-89. PubMed ID: 25526189 [TBL] [Abstract][Full Text] [Related]
15. Seedling and Adult Plant Resistance to Powdery Mildew in Chinese Bread Wheat Cultivars and Lines. Wang ZL; Li LH; He ZH; Duan XY; Zhou YL; Chen XM; Lillemo M; Singh RP; Wang H; Xia XC Plant Dis; 2005 May; 89(5):457-463. PubMed ID: 30795421 [TBL] [Abstract][Full Text] [Related]
16. PmLX66 and PmW14: New Alleles of Pm2 for Resistance to Powdery Mildew in the Chinese Winter Wheat Cultivars Liangxing 66 and Wennong 14. Sun Y; Zou J; Sun H; Song W; Wang X; Li H Plant Dis; 2015 Aug; 99(8):1118-1124. PubMed ID: 30695937 [TBL] [Abstract][Full Text] [Related]
17. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Petersen S; Lyerly JH; Worthington ML; Parks WR; Cowger C; Marshall DS; Brown-Guedira G; Murphy JP Theor Appl Genet; 2015 Feb; 128(2):303-12. PubMed ID: 25425170 [TBL] [Abstract][Full Text] [Related]
18. Triticale powdery mildew: population characterization and wheat gene efficiency. Bouguennec A; Trottet M; du Cheyron P; Lonnet P Commun Agric Appl Biol Sci; 2014; 79(4):106-21. PubMed ID: 26072579 [TBL] [Abstract][Full Text] [Related]
19. Virulence characteristics of Zhang Y; Wu X; Wang W; Xu Y; Sun H; Cao Y; Li T; Karimi-Jashni M PeerJ; 2022; 10():e14118. PubMed ID: 36262408 [TBL] [Abstract][Full Text] [Related]
20. Differentiation Among Blumeria graminis f. sp. tritici Isolates Originating from Wild Versus Domesticated Triticum Species in Israel. Ben-David R; Parks R; Dinoor A; Kosman E; Wicker T; Keller B; Cowger C Phytopathology; 2016 Aug; 106(8):861-70. PubMed ID: 27019062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]