These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 30754680)
1. In Silico Study Probes Potential Inhibitors of Human Dihydrofolate Reductase for Cancer Therapeutics. Rana RM; Rampogu S; Zeb A; Son M; Park C; Lee G; Yoon S; Baek A; Parameswaran S; Park SJ; Lee KW J Clin Med; 2019 Feb; 8(2):. PubMed ID: 30754680 [TBL] [Abstract][Full Text] [Related]
2. In Silico Study Identified Methotrexate Analog as Potential Inhibitor of Drug Resistant Human Dihydrofolate Reductase for Cancer Therapeutics. Rana RM; Rampogu S; Abid NB; Zeb A; Parate S; Lee G; Yoon S; Kim Y; Kim D; Lee KW Molecules; 2020 Jul; 25(15):. PubMed ID: 32752079 [TBL] [Abstract][Full Text] [Related]
3. Pharmacophore-based virtual screening and density functional theory approach to identifying novel butyrylcholinesterase inhibitors. Sakkiah S; Lee KW Acta Pharmacol Sin; 2012 Jul; 33(7):964-78. PubMed ID: 22684028 [TBL] [Abstract][Full Text] [Related]
4. Investigation of non-hydroxamate scaffolds against HDAC6 inhibition: A pharmacophore modeling, molecular docking, and molecular dynamics simulation approach. Zeb A; Park C; Son M; Rampogu S; Alam SI; Park SJ; Lee KW J Bioinform Comput Biol; 2018 Jun; 16(3):1840015. PubMed ID: 29945500 [TBL] [Abstract][Full Text] [Related]
5. Computational Simulations Identified Two Candidate Inhibitors of Cdk5/p25 to Abrogate Tau-associated Neurological Disorders. Zeb A; Son M; Yoon S; Kim JH; Park SJ; Lee KW Comput Struct Biotechnol J; 2019; 17():579-590. PubMed ID: 31073393 [TBL] [Abstract][Full Text] [Related]
6. In silico screening of inhibitors against human dihydrofolate reductase to identify potential anticancer compounds. Soofi A; Rezaei-Tavirani M; Safari-Alighiarloo N J Biomol Struct Dyn; 2023; 41(23):14497-14509. PubMed ID: 36883866 [TBL] [Abstract][Full Text] [Related]
7. Pharmacophore modeling, molecular docking, and molecular dynamics simulation approaches for identifying new lead compounds for inhibiting aldose reductase 2. Sakkiah S; Thangapandian S; Lee KW J Mol Model; 2012 Jul; 18(7):3267-82. PubMed ID: 22249747 [TBL] [Abstract][Full Text] [Related]
8. Pharmacophore modeling, virtual screening, molecular docking studies and density functional theory approaches to identify novel ketohexokinase (KHK) inhibitors. Kavitha R; Karunagaran S; Chandrabose SS; Lee KW; Meganathan C Biosystems; 2015 Dec; 138():39-52. PubMed ID: 26521124 [TBL] [Abstract][Full Text] [Related]
9. Pharmacophore modeling and virtual screening studies of checkpoint kinase 1 inhibitors. Chen JJ; Liu TL; Yang LJ; Li LL; Wei YQ; Yang SY Chem Pharm Bull (Tokyo); 2009 Jul; 57(7):704-9. PubMed ID: 19571415 [TBL] [Abstract][Full Text] [Related]
11. 3D QSAR pharmacophore based virtual screening and molecular docking for identification of potential HSP90 inhibitors. Sakkiah S; Thangapandian S; John S; Kwon YJ; Lee KW Eur J Med Chem; 2010 Jun; 45(6):2132-40. PubMed ID: 20206418 [TBL] [Abstract][Full Text] [Related]
12. Ligand-based pharmacophore modeling and Bayesian approaches to identify c-Src inhibitors. Sakkiah S; Arullaperumal V; Hwang S; Lee KW J Enzyme Inhib Med Chem; 2014 Feb; 29(1):69-80. PubMed ID: 23432516 [TBL] [Abstract][Full Text] [Related]
13. Pharmacophore modeling coupled with molecular dynamic simulation approach to identify new leads for meprin-β metalloprotease. Chaudhuri A; Hudait N; Chakraborty SS Comput Biol Chem; 2019 Jun; 80():292-306. PubMed ID: 31054542 [TBL] [Abstract][Full Text] [Related]
14. Discovery of novel NAMPT inhibitors based on pharmacophore modeling and virtual screening techniques. Yi Q; Zhou L; Shao X; Wang T; Bao G; Shi H; Zhou S; Li X; Tian Y Comb Chem High Throughput Screen; 2014; 17(10):868-78. PubMed ID: 25413783 [TBL] [Abstract][Full Text] [Related]
15. Novel chemical scaffolds of the tumor marker AKR1B10 inhibitors discovered by 3D QSAR pharmacophore modeling. Kumar R; Son M; Bavi R; Lee Y; Park C; Arulalapperumal V; Cao GP; Kim HH; Suh JK; Kim YS; Kwon YJ; Lee KW Acta Pharmacol Sin; 2015 Aug; 36(8):998-1012. PubMed ID: 26051108 [TBL] [Abstract][Full Text] [Related]
16. Pharmacophore mapping of a series of 2,4-diamino-5-deazapteridine inhibitors of Mycobacterium avium complex dihydrofolate reductase. Debnath AK J Med Chem; 2002 Jan; 45(1):41-53. PubMed ID: 11754578 [TBL] [Abstract][Full Text] [Related]
17. Ligand-based virtual screening and molecular docking studies to identify the critical chemical features of potent cathepsin D inhibitors. Sakkiah S; Thangapandian S; Lee KW Chem Biol Drug Des; 2012 Jul; 80(1):64-79. PubMed ID: 22269155 [TBL] [Abstract][Full Text] [Related]
18. In silico screening and study of novel ERK2 inhibitors using 3D QSAR, docking and molecular dynamics. Larif S; Salem CB; Hmouda H; Bouraoui K J Mol Graph Model; 2014 Sep; 53():1-12. PubMed ID: 25064438 [TBL] [Abstract][Full Text] [Related]
19. 3D QSAR pharmacophore-based virtual screening for the identification of potential inhibitors of tyrosinase. Ghayas S; Ali Masood M; Parveen R; Aquib M; Farooq MA; Banerjee P; Sambhare S; Bavi R J Biomol Struct Dyn; 2020 Jul; 38(10):2916-2927. PubMed ID: 31334690 [TBL] [Abstract][Full Text] [Related]
20. Discover potential inhibitors for PFKFB3 using 3D-QSAR, virtual screening, molecular docking and molecular dynamics simulation. Bao Y; Zhou L; Dai D; Zhu X; Hu Y; Qiu Y J Recept Signal Transduct Res; 2018; 38(5-6):413-431. PubMed ID: 30822195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]