These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 30754702)
1. Artificial Neural Network Prediction of Retention of Amino Acids in Reversed-Phase HPLC under Application of Linear Organic Modifier Gradients and/or pH Gradients. D'Archivio AA Molecules; 2019 Feb; 24(3):. PubMed ID: 30754702 [TBL] [Abstract][Full Text] [Related]
2. Retention prediction and separation optimization of ionizable analytes in reversed-phase liquid chromatography by organic modifier gradients in different eluent pHs. Fasoula S; Zisi Ch; Nikitas P; Pappa-Louisi A J Chromatogr A; 2013 Aug; 1305():131-8. PubMed ID: 23885673 [TBL] [Abstract][Full Text] [Related]
3. Artificial neural network prediction of multilinear gradient retention in reversed-phase HPLC: comprehensive QSRR-based models combining categorical or structural solute descriptors and gradient profile parameters. D'Archivio AA; Maggi MA; Ruggieri F Anal Bioanal Chem; 2015 Feb; 407(4):1181-90. PubMed ID: 25395205 [TBL] [Abstract][Full Text] [Related]
4. A simple approach for retention prediction in the pH-gradient reversed-phase liquid chromatography. Pappa-Louisi A; Zisi Ch Talanta; 2012 May; 93():279-84. PubMed ID: 22483911 [TBL] [Abstract][Full Text] [Related]
5. Application of the artificial neural network in quantitative structure-gradient elution retention relationship of phenylthiocarbamyl amino acids derivatives. Tham SY; Agatonovic-Kustrin S J Pharm Biomed Anal; 2002 May; 28(3-4):581-90. PubMed ID: 12008137 [TBL] [Abstract][Full Text] [Related]
6. Properties of the retention time of ionizable analytes in reversed-phase liquid chromatography under organic modifier gradients in different eluent pHs. Zisi Ch; Fasoula S; Pappa-Louisi A; Nikitas P J Chromatogr A; 2013 Nov; 1314():138-41. PubMed ID: 24060093 [TBL] [Abstract][Full Text] [Related]
7. Prediction of the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient-elution conditions. D'Archivio AA; Maggi MA; Ruggieri F J Sep Sci; 2014 Aug; 37(15):1930-6. PubMed ID: 24830601 [TBL] [Abstract][Full Text] [Related]
9. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography]. Shan YC; Zhang YK; Zhao RH Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907 [TBL] [Abstract][Full Text] [Related]
10. Multimode gradient elution in reversed-phase liquid chromatography: application to retention prediction and separation optimization of a set of amino acids in gradient runs involving simultaneous variations of mobile-phase composition, flow rate, and temperature. Pappa-Louisi A; Nikitas P; Papachristos K; Balkatzopoulou P Anal Chem; 2009 Feb; 81(3):1217-23. PubMed ID: 19123773 [TBL] [Abstract][Full Text] [Related]
11. Expressions for multilinear combined pH/organic solvent elution of ionizable analytes in reversed-phase HPLC. Zisi Ch; Fasoula S; Pappa-Louisi A; Nikitas P Anal Chem; 2013 Oct; 85(20):9514-21. PubMed ID: 24010983 [TBL] [Abstract][Full Text] [Related]
12. Chromatographic models to predict the elution of ionizable analytes by organic modifier gradient in reversed phase liquid chromatography. Andrés A; Téllez A; Rosés M; Bosch E J Chromatogr A; 2012 Jul; 1247():71-80. PubMed ID: 22698867 [TBL] [Abstract][Full Text] [Related]
13. Theory of stepwise gradient elution in reversed-phase liquid chromatography coupled with flow rate variations: application to retention prediction and separation optimization of a set of amino acids. Nikitas P; Pappa-Louisi A; Balkatzopoulou P Anal Chem; 2006 Aug; 78(16):5774-82. PubMed ID: 16906723 [TBL] [Abstract][Full Text] [Related]
14. Multilinear gradient elution optimization in reversed-phase liquid chromatography based on logarithmic retention models: application to separation of a set of purines, pyrimidines and nucleosides. Nikitas P; Pappa-Louisi A; Agrafiotou P; Mansour A J Chromatogr A; 2011 Aug; 1218(33):5658-63. PubMed ID: 21774937 [TBL] [Abstract][Full Text] [Related]
15. Multi-variable retention modelling in reversed-phase high-performance liquid chromatography based on the solvation method: a comparison between curvilinear and artificial neural network regression. D'Archivio AA; Maggi MA; Ruggieri F Anal Chim Acta; 2011 Mar; 690(1):35-46. PubMed ID: 21414434 [TBL] [Abstract][Full Text] [Related]
16. Combination of artificial neural network technique and linear free energy relationship parameters in the prediction of gradient retention times in liquid chromatography. Fatemi MH; Abraham MH; Poole CF J Chromatogr A; 2008 May; 1190(1-2):241-52. PubMed ID: 18395736 [TBL] [Abstract][Full Text] [Related]
17. Retention time and peak width in the combined pH/organic modifier gradient high performance liquid chromatography. Wiczling P; Kaliszan R J Chromatogr A; 2010 May; 1217(20):3375-81. PubMed ID: 20347447 [TBL] [Abstract][Full Text] [Related]
18. Retention modeling under organic modifier gradient conditions in ion-pair reversed-phase chromatography. Application to the separation of a set of underivatized amino acids. Pappa-Louisi A; Agrafiotou P; Papachristos K Anal Bioanal Chem; 2010 Jul; 397(6):2151-9. PubMed ID: 20101505 [TBL] [Abstract][Full Text] [Related]
19. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase. Balkatzopoulou P; Fasoula S; Gika H; Nikitas P; Pappa-Louisi A J Chromatogr A; 2015 May; 1396():72-6. PubMed ID: 25900744 [TBL] [Abstract][Full Text] [Related]
20. Retention prediction of a set of amino acids under gradient elution conditions in hydrophilic interaction liquid chromatography. Gika H; Theodoridis G; Mattivi F; Vrhovsek U; Pappa-Louisi A J Sep Sci; 2012 Feb; 35(3):376-83. PubMed ID: 22228618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]