These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 30754764)

  • 1. Hyperhydricity in pepper plants regenerated in vitro: involvement of BiP (Binding Protein) and ultrastructural aspects.
    Fontes MA; Otoni WC; Carolino SMB; Brommonschenkel SH; Fontes EPB; Fári M; Louro RP
    Plant Cell Rep; 1999 Nov; 19(1):81-87. PubMed ID: 30754764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperhydricity in in vitro eggplant regenerated plants: structural characteristics and involvement of BiP (Binding Protein).
    Picoli EA; Otoni WC; Figueira ML; Carolino SM; Almeida RS; Silva EA; Carvalho CR; Fontes EP
    Plant Sci; 2001 Apr; 160(5):857-868. PubMed ID: 11297782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperhydricity in apple: ultrastructural and physiological aspects.
    Chakrabarty D; Park SY; Ali MB; Shin KS; Paek KY
    Tree Physiol; 2006 Mar; 26(3):377-88. PubMed ID: 16356908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic Analysis Reveals the Dynamic Role of Silicon in Alleviation of Hyperhydricity in Carnation Grown In Vitro.
    Muneer S; Wei H; Park YG; Jeong HK; Jeong BR
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29295554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flooding of the apoplast is a key factor in the development of hyperhydricity.
    van den Dries N; Giannì S; Czerednik A; Krens FA; de Klerk GJ
    J Exp Bot; 2013 Nov; 64(16):5221-30. PubMed ID: 24123249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress.
    Saher S; Piqueras A; Hellin E; Olmos E
    Physiol Plant; 2004 Jan; 120(1):152-161. PubMed ID: 15032887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of ancymidol on hyperhydricity, regeneration, starch and antioxidant enzymatic activities in liquid-cultured Narcissus.
    Chen J; Ziv M
    Plant Cell Rep; 2001 Jan; 20(1):22-27. PubMed ID: 30759908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Transcriptome Analysis Reveals Differences in Gene Expression Patterns Between Nonhyperhydric and Hyperhydric Peach Leaves.
    Bakir Y; Eldem V; Zararsiz G; Unver T
    Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology of pepper fruit and the metabolism of antioxidants: chloroplasts, mitochondria and peroxisomes.
    Palma JM; Sevilla F; Jiménez A; del Río LA; Corpas FJ; Álvarez de Morales P; Camejo DM
    Ann Bot; 2015 Sep; 116(4):627-36. PubMed ID: 26220658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural Analysis of Cells From Bell Pepper (
    Otulak-Kozieł K; Kozieł E; Escalante C; Valverde RA
    Front Plant Sci; 2020; 11():491. PubMed ID: 32411163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous Supplementation of Silicon Improved the Recovery of Hyperhydric Shoots in
    Soundararajan P; Manivannan A; Cho YS; Jeong BR
    Front Plant Sci; 2017; 8():738. PubMed ID: 28533793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of bud dehyperhydricity by the method of 'starvation drying combined with AgNO3' in Lycium ruthenicum.
    Li L; An Q; Wang QM; Liu W; Qi X; Cui J; Wang Y; Ke H
    Tree Physiol; 2022 Sep; 42(9):1841-1857. PubMed ID: 35451030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pectin methyl esterases and pectins in normal and hyperhydric shoots of carnation cultured in vitro.
    Saher S; Piqueras A; Hellin E; Olmos E
    Plant Physiol Biochem; 2005 Feb; 43(2):155-9. PubMed ID: 15820663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastoglobules of leaf chloroplasts of two cultivars of Capsicum annuum.
    Simpson DJ; Lee TH
    Cytobios; 1976; 15(58-59):139-47. PubMed ID: 187390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing properties, energy efficiency and carbohydrate metabolism in hyperhydric and normal carnation shoots cultured in vitro: a hypoxia stress?
    Saher S; Fernández-García N; Piqueras A; Hellín E; Olmos E
    Plant Physiol Biochem; 2005 Jun; 43(6):573-82. PubMed ID: 15979313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversion of hyperhydricity in pink (Dianthus chinensis L.) plantlets by AgNO
    Gao H; Xia X; An L; Xin X; Liang Y
    Plant Sci; 2017 Jan; 254():1-11. PubMed ID: 27964780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine structural quantification of drought-stressed Picea abies (L.) organelles based on 3D reconstructions.
    Zellnig G; Perktold A; Zechmann B
    Protoplasma; 2010 Jul; 243(1-4):129-36. PubMed ID: 19544038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of
    Wang H; Niu H; Zhai Y; Lu M
    Front Plant Sci; 2017; 8():1122. PubMed ID: 28702041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Expression of Hyperhydricity Responsive Peach miRNAs.
    Diler E; Unver T; Karakülah G
    J Integr Bioinform; 2016 Dec; 13(5):308. PubMed ID: 28187422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of reactive oxygen species and the potential role of NADPH oxidase in hyperhydricity of garlic plantlets in vitro.
    Tian J; Cheng Y; Kong X; Liu M; Jiang F; Wu Z
    Protoplasma; 2017 Jan; 254(1):379-388. PubMed ID: 26945990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.