These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 30755044)
1. Hyperoxia-induced lung injury increases CDKN1A levels in a newborn rat model of bronchopulmonary dysplasia. Pan YQ; Hou AN Exp Lung Res; 2018; 44(8-9):424-432. PubMed ID: 30755044 [TBL] [Abstract][Full Text] [Related]
2. [Role and mechanism of epithelial-mesenchymal transition in a rat model of bronchopulmonary dysplasia induced by hyperoxia exposure]. Lin YT; Yan CB; Hong WC; Cai C; Gong XH Zhongguo Dang Dai Er Ke Za Zhi; 2024 Jul; 26(7):765-773. PubMed ID: 39014955 [TBL] [Abstract][Full Text] [Related]
3. Changes in pulmonary tissue structure and KL-6/MUC1 expression in a newborn rat model of hyperoxia-induced bronchopulmonary dysplasia. Zhu Y; Fu J; You K; Jin L; Wang M; Lu D; Xue X Exp Lung Res; 2013 Dec; 39(10):417-26. PubMed ID: 24298937 [TBL] [Abstract][Full Text] [Related]
4. Treatment with Geranylgeranylacetone Induces Heat Shock Protein 70 and Attenuates Neonatal Hyperoxic Lung Injury in a Model of Bronchopulmonary Dysplasia. Tokuriki S; Igarashi A; Okuno T; Ohta G; Naiki H; Ohshima Y Lung; 2017 Aug; 195(4):469-476. PubMed ID: 28447205 [TBL] [Abstract][Full Text] [Related]
5. Hyperoxia-induced methylation decreases RUNX3 in a newborn rat model of bronchopulmonary dysplasia. Zhu Y; Fu J; Yang H; Pan Y; Yao L; Xue X Respir Res; 2015 Jun; 16(1):75. PubMed ID: 26104385 [TBL] [Abstract][Full Text] [Related]
6. [Anti-inflammatory effects of erythropoietin on hyperoxia-induced bronchopulmonary dysplasia in newborn rats]. Wang XL; Xue XD Zhonghua Er Ke Za Zhi; 2009 Jun; 47(6):446-51. PubMed ID: 19951473 [TBL] [Abstract][Full Text] [Related]
7. Recombinant CXCL17 Treatment Alleviates Hyperoxia-Induced Lung Apoptosis and Inflammation In Vivo and Vitro by Activating the AKT Pathway: A Possible Therapeutic Approach for Bronchopulmonary Dysplasia. Chen P; Cheng Y; Hu J; Fang R; Yang LQ Mol Biotechnol; 2024 Sep; 66(9):2349-2361. PubMed ID: 37710083 [TBL] [Abstract][Full Text] [Related]
8. SOX4 arrests lung development in rats with hyperoxia‑induced bronchopulmonary dysplasia by controlling EZH2 expression. Pan B; Xue X; Zhang D; Li M; Fu J Int J Mol Med; 2017 Dec; 40(6):1691-1698. PubMed ID: 29039454 [TBL] [Abstract][Full Text] [Related]
9. [Expression and roles of CDK4 and p21 in lung tissues of premature rats with hyperoxia-induced chronic lung disease]. Gao Y; Xue XD; Li JY; Wang N Zhongguo Dang Dai Er Ke Za Zhi; 2007 Dec; 9(6):595-600. PubMed ID: 18082050 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of β-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia. Alapati D; Rong M; Chen S; Hehre D; Hummler SC; Wu S Am J Respir Cell Mol Biol; 2014 Jul; 51(1):104-13. PubMed ID: 24484510 [TBL] [Abstract][Full Text] [Related]
12. The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury. Sammour I; Somashekar S; Huang J; Batlahally S; Breton M; Valasaki K; Khan A; Wu S; Young KC PLoS One; 2016; 11(10):e0164269. PubMed ID: 27711256 [TBL] [Abstract][Full Text] [Related]
13. Association of increased pulmonary interleukin-6 with the priming effect of intra-amniotic lipopolysaccharide on hyperoxic lung injury in a rat model of bronchopulmonary dysplasia. Kim DH; Choi CW; Kim EK; Kim HS; Kim BI; Choi JH; Lee MJ; Yang EG Neonatology; 2010 Jun; 98(1):23-32. PubMed ID: 19955834 [TBL] [Abstract][Full Text] [Related]
14. Human β-Defensin-2 Improves Hyperoxia-Induced Lung Structural and Functional Injury in Neonatal Rats. Sun Y; Chen C; Di T; Yang J; Wang K; Zhu Y; Zhu R; Zhou A; Qian Y Med Sci Monit; 2019 Aug; 25():6074-6084. PubMed ID: 31411185 [TBL] [Abstract][Full Text] [Related]
15. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice. Eldredge LC; Treuting PM; Manicone AM; Ziegler SF; Parks WC; McGuire JK Am J Respir Cell Mol Biol; 2016 Feb; 54(2):273-83. PubMed ID: 26192732 [TBL] [Abstract][Full Text] [Related]
16. Does Chrysin prevent severe lung damage in Hyperoxia-Induced lung injury Model? Ozdemir R; Gokce IK; Taslidere AC; Tanbek K; Gul CC; Sandal S; Turgut H; Kaya H; Aslan M Int Immunopharmacol; 2021 Oct; 99():108033. PubMed ID: 34343938 [TBL] [Abstract][Full Text] [Related]
17. Recombinant CCN1 prevents hyperoxia-induced lung injury in neonatal rats. Vaidya R; Zambrano R; Hummler JK; Luo S; Duncan MR; Young K; Lau LF; Wu S Pediatr Res; 2017 Nov; 82(5):863-871. PubMed ID: 28700567 [TBL] [Abstract][Full Text] [Related]
18. [Effect of intra-amniotic endotoxin priming plus hyperoxic exposure on the expression of vascular endothelial growth factor and its receptors in lungs of preterm newborn rats]. Wang W; Wei W; Ning Q; Luo XP Zhonghua Er Ke Za Zhi; 2007 Jul; 45(7):533-8. PubMed ID: 17953812 [TBL] [Abstract][Full Text] [Related]
19. Genipin attenuates hyperoxia-induced lung injury and pulmonary hypertension via targeting glycogen synthase kinase-3 β in neonatal rats. Li J; Shi J; Li P; Guo X; Wang T; Liu A Nutrition; 2019 Jan; 57():237-244. PubMed ID: 30196116 [TBL] [Abstract][Full Text] [Related]
20. BCL6 attenuates hyperoxia-induced lung injury by inhibiting NLRP3-mediated inflammation in fetal mouse. Chen D; Zhao HM; Deng XH; Li SP; Zhou MH; Wu YX; Tong Y; Yu RQ; Pang QF Exp Lung Res; 2024; 50(1):25-41. PubMed ID: 38419581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]