These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 30755108)
1. Effect of Noise Reduction Gain Errors on Simulated Cochlear Implant Speech Intelligibility. Kressner AA; May T; Dau T Trends Hear; 2019; 23():2331216519825930. PubMed ID: 30755108 [TBL] [Abstract][Full Text] [Related]
2. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing. Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372 [TBL] [Abstract][Full Text] [Related]
3. Understanding the effect of noise on electrical stimulation sequences in cochlear implants and its impact on speech intelligibility. Qazi OU; van Dijk B; Moonen M; Wouters J Hear Res; 2013 May; 299():79-87. PubMed ID: 23396271 [TBL] [Abstract][Full Text] [Related]
4. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing. Williges B; Dietz M; Hohmann V; Jürgens T Trends Hear; 2015 Dec; 19():. PubMed ID: 26721918 [TBL] [Abstract][Full Text] [Related]
5. The potential of onset enhancement for increased speech intelligibility in auditory prostheses. Koning R; Wouters J J Acoust Soc Am; 2012 Oct; 132(4):2569-81. PubMed ID: 23039450 [TBL] [Abstract][Full Text] [Related]
6. Effects of a transient noise reduction algorithm on speech intelligibility in noise, noise tolerance and perceived annoyance in cochlear implant users. Dingemanse JG; Vroegop JL; Goedegebure A Int J Audiol; 2018 May; 57(5):360-369. PubMed ID: 29334269 [TBL] [Abstract][Full Text] [Related]
7. Vibro-Tactile Enhancement of Speech Intelligibility in Multi-talker Noise for Simulated Cochlear Implant Listening. Fletcher MD; Mills SR; Goehring T Trends Hear; 2018; 22():2331216518797838. PubMed ID: 30222089 [TBL] [Abstract][Full Text] [Related]
10. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects. Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538 [TBL] [Abstract][Full Text] [Related]
11. Speech Intelligibility and Spatial Release From Masking Improvements Using Spatial Noise Reduction Algorithms in Bimodal Cochlear Implant Users. Zedan A; Jürgens T; Williges B; Kollmeier B; Wiebe K; Galindo J; Wesarg T Trends Hear; 2021; 25():23312165211005931. PubMed ID: 33926327 [TBL] [Abstract][Full Text] [Related]
12. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field. Rader T; Fastl H; Baumann U Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408 [TBL] [Abstract][Full Text] [Related]
13. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm. Fink N; Furst M; Muchnik C J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899 [TBL] [Abstract][Full Text] [Related]
14. Effects of Additional Low-Pass-Filtered Speech on Listening Effort for Noise-Band-Vocoded Speech in Quiet and in Noise. Pals C; Sarampalis A; van Dijk M; Başkent D Ear Hear; 2019; 40(1):3-17. PubMed ID: 29757801 [TBL] [Abstract][Full Text] [Related]
15. Head shadow enhancement with low-frequency beamforming improves sound localization and speech perception for simulated bimodal listeners. Dieudonné B; Francart T Hear Res; 2018 Jun; 363():78-84. PubMed ID: 29555110 [TBL] [Abstract][Full Text] [Related]
20. Optimising the effect of noise reduction algorithm ClearVoice in cochlear implant users by increasing the maximum comfort levels. Dingemanse JG; Goedegebure A Int J Audiol; 2018 Mar; 57(3):230-235. PubMed ID: 29065731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]